logo

Derivation of the Chapman-Kolmogorov Equation 📂Probability Theory

Derivation of the Chapman-Kolmogorov Equation

Theorem

Probability process establishes the following equations for transition probabilities pij(n)p_{ij}^{(n)}, pij(t)p_{ij}(t) and transition probability matrices P(n)P^{(n)}, P(t)P(t).

Discrete Probability Process

pij(n+m)=kpik(n)pkj(m)P(n+m)=P(n)P(m) \begin{align*} p_{ ij }^{ (n+m) } =& \sum _{ k } p_{ ik }^{ (n) } p _{ kj }^{ (m) } \\ P^{(n+m)} =& P^{(n)} P^{(m)} \end{align*}

Continuous Probability Process

pij(t+s)=kpik(t)pkj(s)P(t+s)=P(t)P(s) \begin{align*} p_{ij} (t + s) =& \sum _{ k } p_{ ik } \left( t \right) p _{ kj } \left( s \right) \\ P(t+s) =& P(t) P(s) \end{align*}

Explanation

This means that the steps n+mn+m it takes to go from state ii to jj can be broken down into nn and mm. Even without proving it, intuitively thinking about the probability of taking nn steps from ii to kk and then mm steps from kk to jj should equal the probability of moving from ii through kk to jj, and summing up these probabilities for all states kk will result in the probability of going from ii to jj no matter what’s in between.

Derivation

Strategy: Proof is only for discrete probability processes. Initially assume X0X_0 to be ii, so it’s unnecessary to mention ‘starting from ii’ afterwards. The expression inside sigma can be transitioned like multiplying both sides of conditional probability P(AB)=P(AB)/P(B)P(A|B)=P(AB)/P(B) by P(B)P(B) results in P(AB)=P(AB)P(B)P(AB)=P(A|B)P(B).


Assuming X0=i { X }_{ 0 }=i pij(n+m)=P(Xn+m=j)=kP(Xm=j,Xn=k)=kP(Xm=jXn=k)P(Xn=k)=kpik(n)pkj(m) \begin{align*} { p } _{ ij }^{ (n+m) } =& P({ X }_{ n+m }=j ) \\ =& \sum _{ k }^{ }{ P({ X }_{ m }=j , { X }_{ n }=k) } \\ =& \sum _{ k }^{ }{ P({ X }_{ m }=j | { X }_{ n }=k)P({ X }_{ n }=k) } \\ =& \sum _{ k }^{ }{ { p }_{ ik }^{ (n) } { p }_{ kj }^{ (m) } } \end{align*}