logo

Addition Formula for Trigonometric Functions: Various Proofs 📂Functions

Addition Formula for Trigonometric Functions: Various Proofs

Theorem

sin(α+β)=sinαcosβ+cosαsinβsin(αβ)=sinαcosβcosαsinβcos(α+β)=cosαcosβsinαsinβcos(αβ)=cosαcosβ+sinαsinβtan(α+β)=tanα+tanβ1tanαtanβtan(αβ)=tanαtanβ1+tanαtanβ \sin\left( \alpha +\beta \right) =\sin\alpha \cos\beta +\cos\alpha \sin\beta \\ \sin\left( \alpha -\beta \right) =\sin\alpha \cos\beta -\cos\alpha \sin\beta \\ \cos\left( \alpha +\beta \right) =\cos\alpha \cos\beta -\sin\alpha \sin\beta \\ \cos\left( \alpha -\beta \right) =\cos\alpha \cos\beta +\sin\alpha \sin\beta \\ \tan\left( \alpha +\beta \right) =\frac { \tan\alpha +\tan\beta }{ 1-\tan\alpha \tan\beta } \\ \tan\left( \alpha -\beta \right) =\frac { \tan\alpha -\tan\beta }{ 1+\tan\alpha \tan\beta }

Proof

Proof using the Law of Cosines

1.png

By Pythagoras’ theorem AB2=(cosαcosβ)2+(sinαsinβ)2=22cosαcosβ2sinαsinβ \begin{align*} {\overline { AB } } ^{ 2 } =& {( \cos \alpha -\cos \beta )}^{ 2 }+{(\sin\alpha -\sin\beta )}^{ 2 } \\ =& 2-2 \cos \alpha \cos \beta –2 \sin \alpha \sin \beta \end{align*}

By the Second Law of Cosines

AB2=12+122cos(βα)=22cos(βα) \begin{align*} { \overline { AB } } ^{ 2 } =& 1^{ 2 }+1^{ 2 }-2\cos(\beta -\alpha ) \\ =& 2-2\cos(\beta -\alpha ) \end{align*}

Since the right-hand sides of both equations are equal

cos(βα)=cosαcosβ+sinαsinβ \cos(\beta -\alpha )=\cos\alpha \cos\beta +\sin\alpha \sin\beta

This is the most basic method of proof, and although there are various methods, this is usually the first one encountered.

Proof using the Dot Product of Vectors

cos(βα)=OAOBOAOB=cosαcosβ+sinαsinβ \begin{align*} \cos(\beta -\alpha ) =& \frac { \vec { OA }\cdot \vec { OB } }{ \left| \vec { OA } \right| \left| \vec { OB } \right| } \\ =& \cos\alpha \cos\beta +\sin\alpha \sin\beta \end{align*}

Writing the dot product of vectors on paper is practically the same as writing a single line. The idea is simple and it’s the easiest method.

Proof using Triangles

3.png

(1) Let the area of the triangle be SS

S=12absin(α+β) S=\frac { 1 }{ 2 }ab\sin(\alpha +\beta )

(2) Adding the areas of the two triangles bounded by the perpendicular

S=12bhsinα+12ahsinβ S=\frac { 1 }{ 2 }bh\sin\alpha +\frac { 1 }{ 2 }ah\sin\beta

Since h=bcosα=acosβh=b\cos\alpha =a\cos\beta

S=12abcosβsinα+12abcosαsinβ S=\frac { 1 }{ 2 }ab\cos\beta \sin\alpha +\frac { 1 }{ 2 }ab\cos\alpha \sin\beta

What is obtained in (1) and (2) are both SS, thus canceling 12ab\frac { 1 }{ 2 }ab on both sides gives

sin(α+β)=cosβsinα+cosαsinβ \sin(\alpha +\beta )=\cos\beta \sin\alpha +\cos\alpha \sin\beta

The proof using the area of a triangle is simple in idea, and dealing with hh is key.

Proof using Rotational Transformation

4.png Rotating point AA around the origin by β\beta

[cos(α+β)sin(α+β)]=[cosβsinβsinβcosβ][cosαsinα]    {cos(α+β)=cosβcosαsinβsinαsin(α+β)=sinβcosα+cosβsinα \begin{bmatrix} \cos(\alpha +\beta ) \\ \sin(\alpha +\beta ) \end{bmatrix} = \begin{bmatrix} { \cos\beta }&{ -\sin\beta } \\ { \sin\beta }&{ \cos\beta } \end{bmatrix} \begin{bmatrix} { \cos\alpha } \\ { \sin\alpha } \end{bmatrix} \\ \implies \begin{cases} \cos(\alpha +\beta )=\cos\beta \cos\alpha -\sin\beta \sin\alpha \\ { \sin(\alpha +\beta )=\sin\beta \cos\alpha +\cos\beta \sin\alpha } \end{cases}

This is a proof using rotational transformation. It requires setting the angle slightly differently but it’s great since it allows obtaining the cosines and sines at the same time.

Corollaries

These cases are used more often than one might think, so it’s convenient to remember them.

  • sin(π4+π6)=cos(π4π6)=3+122sin(π4π6)=cos(π4+π6)=3122 \begin{align*} \sin(\frac { \pi }{ 4 }+\frac { \pi }{ 6 })=\cos(\frac { \pi }{ 4 }-\frac { \pi }{ 6 })=\frac { \sqrt { 3 }+1 }{ 2\sqrt { 2 } } \\ \sin(\frac { \pi }{ 4 }-\frac { \pi }{ 6 })=\cos(\frac { \pi }{ 4 }+\frac { \pi }{ 6 })=\frac { \sqrt { 3 }-1 }{ 2\sqrt { 2 } } \end{align*}
  • Addition formula for tangent: tan(θ1±θ2)=tanθ1±tanθ21tanθ1tanθ2 \tan ( \theta_1 \pm \theta_2) = \dfrac{\tan\theta_1 \pm \tan\theta_2}{1 \mp \tan\theta_1\tan\theta_2}

Proof of the Addition Formula for Tangent

tan(θ1±θ2)=sin(θ1±θ2)cos(θ1±θ2)=sinθ1cosθ2±sinθ2cosθ2cosθ1cosθ2sinθ1sinθ2 \tan (\theta_1 \pm \theta2)=\dfrac{\sin ( \theta_1 \pm \theta_2)}{\cos ( \theta_1 \pm \theta_2)} =\dfrac{ \sin \theta_1 \cos \theta_2 \pm \sin \theta_2 \cos \theta_2}{\cos \theta_1 \cos\theta_2 \mp \sin\theta_1 \sin\theta_2} When dividing both the numerator and the denominator by cosθ1cosθ2\cos\theta_1\cos\theta_2 sinθ1cosθ1±sinθ2cosθ11sinθ1sinθ2cosθ1cosθ2=tanθ1±tanθ21tanθ1tanθ2 \dfrac{ \dfrac{\sin \theta_1}{ \cos \theta_1} \pm \dfrac{\sin \theta_2}{ \cos \theta_1} } { 1 \mp \dfrac{\sin\theta_1 \sin\theta_2}{\cos\theta_1\cos\theta_2 }} = \dfrac{ \tan\theta_1 \pm \tan\theta_2}{1 \mp \tan\theta_1\tan\theta_2}