logo

Bilinear Forms and Hermitian Forms 📂Linear Algebra

Bilinear Forms and Hermitian Forms

Definition1

Let’s say we have two vectors x,uRn\mathbf{x}, \mathbf{u} \in \mathbb{R}^{n} as follows.

x=[x1x2xn],uT=[u1u2un] \mathbf{x}=\begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix},\quad \mathbf{u}^{T} = \begin{bmatrix} u_{1} & u_{2} & \cdots & u_{n} \end{bmatrix}

For a real constant aijR(1i,jn)a_{ij} \in \mathbb{R} (1\le i,j \le n), the function A:Rn×RnRA : \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}, defined as follows, is called the bilinear form.

A(u,x):=i,k=1naikuixk A(\mathbf{u},\mathbf{x}):=\sum \limits_{i,k=1}^{n} a_{ik}u_{i}x_{k}

In the bilinear form, if the constant aij(1i,jn)a_{ij} (1\le i,j \le n) is a complex number and satisfies aij=ajia_{ij}=\overline{a_{ji}}, it is called the Hermite form.

A(u,x)=i,k=1naikuixk=uAx A(\mathbf{u},\mathbf{x})=\sum \limits _{i,k=1} ^{n} a_{ik}u_{i}x_{k} = \mathbf{u}^{\ast} A \mathbf{x}

Explanation

Simply put, a Hermitian matrix in the context of bilinear form is when the matrix AA is Hermitian.

Let’s notate the matrix of constants as follows.

A=[a11a12a1na21a22a2nan1an2ann] \quad A=\begin{bmatrix} a_{11} & a_{12} &\cdots & a_{1n} \\ a_{21} & a_{22} &\cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}

Then, the bilinear form is expressed as a matrix product, which is also called the bilinear form corresponding to matrix AA.

A(u,x)=i,k=1naikuixk=uTAx A(\mathbf{u},\mathbf{x})=\sum \limits_{i,k=1}^{n} a_{ik}u_{i}x_{k}= \mathbf{u}^{T}A\mathbf{x}

If a system of linear equations is given as

{a11x1+a12x2++a1nxn=y1a21x1+a22x2++a2nxn=y2an1x1+an2x2++annxn=yn \begin{cases} a_{11}x_{1}+a_{12}x_{2}+\cdots +a_{1n}x_{n}&=y_{1} \\ a_{21}x_{1}+a_{22}x_{2}+\cdots +a_{2n}x_{n}&=y_{2} \\ &\vdots \\ a_{n1}x_{1}+a_{n2}x_{2}+\cdots +a_{nn}x_{n}&=y_{n} \end{cases}

By multiplying each equation by uiu_{i} and adding them all together, one can obtain a bilinear form as below. II is the identity matrix.

A(u,x)=i,k=1naikuixk=i=1nuiyi=I(u,y) A(\mathbf{u},\mathbf{x})=\sum \limits_{i,k=1}^{n} a_{ik}u_{i}x_{k}=\sum \limits_{i=1}^{n}u_{i}y_{i}=I(\mathbf{u}, \mathbf{y})

Quadratic form is a special case in bilinear form where u=x\mathbf{u} = \mathbf{x}.

See Also


  1. Howard Anton, Elementary Linear Algebra: Aplications Version (12th Edition, 2019), p416-417 ↩︎