logo

Proof of the Existence of a Complete Singular Value Decomposition 📂Matrix Algebra

Proof of the Existence of a Complete Singular Value Decomposition

Overview

Eigenvalue diagonalization was limited to square matrices in application, but Singular Value Decomposition (SVD) had no such constraint.

Determining whether such useful decomposition methods universally apply to all matrices, i.e., the existence of decomposition, is considered a significantly important issue.

Theorem

For three natural numbers mnr=rankAm \ge n \ge r = \text{rank} A, the matrix ARm×nA \in \mathbb{R}^{m \times n} possesses an SVD.

Proof

For any vector x0\mathbf{x} \ne \mathbb{0}, since xTATAx=Ax2>0\mathbf{x}^{T} A^{T} A \mathbf{x} = || A \mathbf{x} || ^2 > 0, eigenvalue σi2\sigma_{i}^{2} of ATAA^{T} A is positive for iri \le r and 00 for i>ri > r. For convenience, σ1σ2σr>0=σr+1==σn \sigma_{1} \ge \sigma_{2} \ge \cdots \ge \sigma_{r}>0 = \sigma_{r+1} = \cdots = \sigma_{n} define diagonal matrix S:=diag(σ1,σ2,,σr)S := \text{diag} ( \sigma_{1} , \sigma_{2} , \cdots , \sigma_{r}). If v1,v2,,vn\mathbf{v}_{1} , \mathbf{v}_{2} , \cdots , \mathbf{v}_{n}, which are mutually orthonormal, correspond to σ1,σ2,,σn\sigma_{1} , \sigma_{2} , \cdots , \sigma_{n}, then ATAvi=σi2vi A^{T} A \mathbf{v}_{i} = \sigma_{i}^2 \mathbf{v}_{i} Now V1:=[v1v2vr]V2:=[vr+1vr+2vn] V_1 := \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{r} \end{bmatrix} \\ V_2 := \begin{bmatrix} \mathbf{v}_{r+1} & \mathbf{v}_{r+2} & \cdots & \mathbf{v}_{n} \end{bmatrix} constructing V:=[V1V2] V := \begin{bmatrix} V_{1} & V_{2} \end{bmatrix} results in orthogonal matrix. For V1V_{1}, since ATAV1=V1S2A^{T} A V_{1} = V_{1} S^2 and multiplying both sides by V1TV_{1}^{T} yields V1TATAV1=V1TV1S2=S2 V_{1}^{T} A^{T} A V_{1} = V_{1}^{T} V_{1} S^2 = S^2 Here, if U1:=AV1S1U_{1} : = A V_{1} S^{-1} is defined as U1TAV1=(AV1S1)TAV1=S1(AV1)TAV1=S1S2=S U_{1}^{T} A V_{1} = ( A V_{1} S^{-1} )^{T} A V_{1} = S^{-1} (A V_{1})^{T} A V_{1} = S^{-1} \cdot S^2 = S and since σr+1==σn=0\sigma_{r+1} = \cdots = \sigma_{n} = 0 for V2V_{2}, ATAV2=V2O=0 A^{T} A V_{2} = V_{2} O = \mathbb{0} and multiplying both sides by V2TV_{2}^{T} yields V2TATAV2=AV22=0 V_{2}^{T} A^{T} A V_{2} = \| A V_{2} \|^2 = 0

Now U:=[U1U2] U : = \begin{bmatrix} U_{1} & U_{2} \end{bmatrix} defining U2U_{2} to make it an orthogonal matrix results in U2TU1=0U_{2}^{T} U_{1} = 0, and multiplying both sides of AV1=U1SAV_{1} = U_{1} S by U2TU_{2}^{T} yields U2TAV1=U2TU1S=0 U_{2}^{T} AV_{1} = U_{2}^{T} U_{1} S = 0 Meanwhile U1TU1=(AV1S1)T(AV1S1)=SV1TATAVS1=I U_{1}^{T} U_{1} = ( A V_{1} S^{-1} ) ^{T} ( A V_{1} S^{-1} ) = S V_{1}^{T} A^{T} A V S^{-1} = I implies that U1Rm×rU_{1} \in \mathbb{R}^{m \times r} consists of orthonormal vectors. However, it does not prove that U1U_{1} is an orthogonal matrix, so it’s unknown if U1U1T=IU_{1} U_{1}^{T} = I, and the necessity for verifying AV1=U1SA V_{1} = U_{1} S is as follows. UTAV1=[U1TU2T]AV1=[U1TAV1U2TAV1]=[SO]    AV1=U[SO]=[U1U2][SO]=U1S \begin{align*} && U^{T} A V_{1} = \begin{bmatrix} U_{1}^{T} \\ U_{2}^{T} \end{bmatrix} A V_{1} = \begin{bmatrix} U_{1}^{T} A V_{1} \\ U_{2}^{T} A V_{1} \end{bmatrix} = \begin{bmatrix} S \\ O \end{bmatrix} \\ \iff & AV_{1} = U \begin{bmatrix} S \\ O \end{bmatrix} = \begin{bmatrix} U_{1} & U_{2} \end{bmatrix} \begin{bmatrix} S \\ O \end{bmatrix} = U_{1} S \end{align*}

Finally, defining Σ:=[SOOO]Rm×m\Sigma : = \begin{bmatrix} S & O \\ O & O \end{bmatrix} \in \mathbb{R}^{m \times m} AV=A[V1V2]=[AV1AV2]=[U1SO]=[U1U2][SOOO]=UΣ \begin{align*} AV =& A \begin{bmatrix} V_{1} & V_{2} \end{bmatrix} \\ =& \begin{bmatrix} A V_{1} & A V_{2} \end{bmatrix} \\ =& \begin{bmatrix} U_{1} S & O \end{bmatrix} \\ =& \begin{bmatrix} U_{1} & U_{2} \end{bmatrix} \begin{bmatrix} S & O \\ O & O \end{bmatrix} \\ =& U \Sigma \end{align*} thus obtains A=UΣVT=U1SV1TA = U \Sigma V^{T} = U_{1} S V_{1}^{T}, i.e., an SVD.

Generalization

Even though the conditions of the theorem are ARm×nA \in \mathbb{R}^{m \times n}, in fact, it is possible to generalize to ACm×nA \in \mathbb{C}^{m \times n}.