logo

Gaussian Curvature with Negative Values on Rotational Surfaces 📂Geometry

Gaussian Curvature with Negative Values on Rotational Surfaces

Overview1

The document explains rotation surfaces with negative Gaussian curvature.

Description

The curvature of the rotation surface is K=rrK = - \dfrac{r^{\prime \prime}}{r}, therefore ra2r=0r^{\prime \prime} - a^{2}r = 0. The solution of this differential equation is as follows:

r(s)=c1cosh(as)+c2sinh(as) r(s) = c_{1} \cosh(as) + c_{2}\sinh(as)

This can be written for some appropriate constant B,b,C,cRB, b, C, c \in \mathbb{R} as follows:

r(s)=c1cosh(as)+c2sinh(as)={Bcosh(as+b)if c1>c2Aeasif c1=c2=ACsinh(as+c)if c1<c2 r(s) = c_{1} \cosh (as) + c_{2} \sinh (as) = \begin{cases} B\cosh(as + b) & \text{if } c_{1} \gt c_{2} \\ A e^{as} & \text{if } c_{1} = c_{2} = A \\ C\sinh(as + c) & \text{if } c_{1} \lt c_{2} \end{cases}

By choosing the starting point of the curve α\boldsymbol{\alpha} that forms the rotation surface so that b=0,c=0b=0, c=0, we can infer that, due to z=±1(r)2z^{\prime} = \pm\sqrt{1 - (r^{\prime})^{2}}, the rotation surface is divided into the following three cases:

{r(s)=Aeasz(s)=±0s1a2A2e2atdt+D \begin{equation} \begin{cases} r(s) &= A e^{as} \\ z(s) &= \displaystyle \pm \int_{0}^{s} \sqrt{1 - a^{2}A^{2}e^{2at}}dt + D \end{cases} \end{equation}

{r(s)=Bcosh(as)z(s)=±0s1a2B2sinh2(at)dt+D \begin{equation} \begin{cases} r(s) &= B \cosh (as) \\ z(s) &= \displaystyle \pm \int_{0}^{s} \sqrt{1 - a^{2}B^{2}\sinh^{2}(at)}dt + D \end{cases} \end{equation}

{r(s)=Csinh(as)z(s)=±0s1a2C2cosh2(at)dt+D \begin{equation} \begin{cases} r(s) &= C \sinh (as) \\ z(s) &= \displaystyle \pm \int_{0}^{s} \sqrt{1 - a^{2}C^{2}\cosh^{2}(at)}dt + D \end{cases} \end{equation}

Example

Let’s examine the case of (1)(1). For z(s)z(s) to be well-defined, it must be Aaeas1A a e^{as} \le 1. Therefore,

s1aln1aA s \le \dfrac{1}{a}\ln \dfrac{1}{aA}

Now, let’s set aAeat=sinϕaAe^{at} = \sin \phi.

a2Aeatdt=cosϕdϕ    dt=cosϕa2Aeatdϕ=cosϕasinϕdϕ a^{2}Ae^{at} dt = \cos \phi d \phi \implies dt = \dfrac{\cos\phi}{a^{2}Ae^{at}}d\phi = \dfrac{\cos\phi}{a\sin\phi}d\phi

z(s)z(s) is as follows:

z(s)=±sin1(Aa)sin1(Aaeas)1sin2ϕcosϕasinϕdϕ=±sin1(Aa)sin1(Aaeas)cosϕcosϕasinϕdϕ=±1asin1(Aa)sin1(Aaeas)1sin2ϕsinϕdϕ=±1asin1(Aa)sin1(Aaeas)1sinϕsinϕdϕ=±1a[ln(tanϕ2)+cosϕ]sin1(Aa)sin1(Aaeas) \begin{align*} z(s) &= \pm \int _{\sin^{-1}(Aa)}^{\sin^{-1}(Aae^{as})} \sqrt{1 - \sin^{2}\phi} \dfrac{\cos \phi}{a \sin \phi} d\phi \\ &= \pm \int _{\sin^{-1}(Aa)}^{\sin^{-1}(Aae^{as})} \cos \phi \dfrac{\cos \phi}{a \sin \phi} d\phi \\ &= \pm \dfrac{1}{a}\int _{\sin^{-1}(Aa)}^{\sin^{-1}(Aae^{as})} \dfrac{1 - \sin^{2}\phi}{\sin \phi} d\phi \\ &= \pm\dfrac{1}{a} \int _{\sin^{-1}(Aa)}^{\sin^{-1}(Aae^{as})} \dfrac{1}{\sin\phi} - \sin \phi d \phi \\ &= \pm \dfrac{1}{a} \left[ \ln (\tan \frac{\phi}{2}) + \cos \phi \right]_{\sin^{-1}(Aa)}^{\sin^{-1}(Aae^{as})} \\ \end{align*}

Substituting,

z(s)=±1a(lntan(12sin1(Aaeas))tan(12sin1(Aa))+1(Aaeas)21(Aa)2) z(s) = \pm \dfrac{1}{a} \left( \ln \dfrac{\tan \left( \frac{1}{2}\sin^{-1}(Aae^{as}) \right)}{\tan \left( \frac{1}{2} \sin ^{-1}(Aa) \right)} + \sqrt{1 - (Aae^{as})^{2}} - \sqrt{1 - (Aa)^{2}}\right)


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p157-159 ↩︎