Gaussian Curvature with Negative Values on Rotational Surfaces
📂Geometry Gaussian Curvature with Negative Values on Rotational Surfaces Overview The document explains rotation surfaces with negative Gaussian curvature .
Description The curvature of the rotation surface is K = − r ′ ′ r K = - \dfrac{r^{\prime \prime}}{r} K = − r r ′′ , therefore r ′ ′ − a 2 r = 0 r^{\prime \prime} - a^{2}r = 0 r ′′ − a 2 r = 0 . The solution of this differential equation is as follows:
r ( s ) = c 1 cosh ( a s ) + c 2 sinh ( a s )
r(s) = c_{1} \cosh(as) + c_{2}\sinh(as)
r ( s ) = c 1 cosh ( a s ) + c 2 sinh ( a s )
This can be written for some appropriate constant B , b , C , c ∈ R B, b, C, c \in \mathbb{R} B , b , C , c ∈ R as follows:
r ( s ) = c 1 cosh ( a s ) + c 2 sinh ( a s ) = { B cosh ( a s + b ) if c 1 > c 2 A e a s if c 1 = c 2 = A C sinh ( a s + c ) if c 1 < c 2
r(s) = c_{1} \cosh (as) + c_{2} \sinh (as) =
\begin{cases}
B\cosh(as + b) & \text{if } c_{1} \gt c_{2} \\
A e^{as} & \text{if } c_{1} = c_{2} = A \\
C\sinh(as + c) & \text{if } c_{1} \lt c_{2}
\end{cases}
r ( s ) = c 1 cosh ( a s ) + c 2 sinh ( a s ) = ⎩ ⎨ ⎧ B cosh ( a s + b ) A e a s C sinh ( a s + c ) if c 1 > c 2 if c 1 = c 2 = A if c 1 < c 2
By choosing the starting point of the curve α \boldsymbol{\alpha} α that forms the rotation surface so that b = 0 , c = 0 b=0, c=0 b = 0 , c = 0 , we can infer that, due to z ′ = ± 1 − ( r ′ ) 2 z^{\prime} = \pm\sqrt{1 - (r^{\prime})^{2}} z ′ = ± 1 − ( r ′ ) 2 , the rotation surface is divided into the following three cases:
{ r ( s ) = A e a s z ( s ) = ± ∫ 0 s 1 − a 2 A 2 e 2 a t d t + D
\begin{equation}
\begin{cases}
r(s) &= A e^{as} \\
z(s) &= \displaystyle \pm \int_{0}^{s} \sqrt{1 - a^{2}A^{2}e^{2at}}dt + D
\end{cases}
\end{equation}
⎩ ⎨ ⎧ r ( s ) z ( s ) = A e a s = ± ∫ 0 s 1 − a 2 A 2 e 2 a t d t + D
{ r ( s ) = B cosh ( a s ) z ( s ) = ± ∫ 0 s 1 − a 2 B 2 sinh 2 ( a t ) d t + D
\begin{equation}
\begin{cases}
r(s) &= B \cosh (as) \\
z(s) &= \displaystyle \pm \int_{0}^{s} \sqrt{1 - a^{2}B^{2}\sinh^{2}(at)}dt + D
\end{cases}
\end{equation}
⎩ ⎨ ⎧ r ( s ) z ( s ) = B cosh ( a s ) = ± ∫ 0 s 1 − a 2 B 2 sinh 2 ( a t ) d t + D
{ r ( s ) = C sinh ( a s ) z ( s ) = ± ∫ 0 s 1 − a 2 C 2 cosh 2 ( a t ) d t + D
\begin{equation}
\begin{cases}
r(s) &= C \sinh (as) \\
z(s) &= \displaystyle \pm \int_{0}^{s} \sqrt{1 - a^{2}C^{2}\cosh^{2}(at)}dt + D
\end{cases}
\end{equation}
⎩ ⎨ ⎧ r ( s ) z ( s ) = C sinh ( a s ) = ± ∫ 0 s 1 − a 2 C 2 cosh 2 ( a t ) d t + D
Example Let’s examine the case of ( 1 ) (1) ( 1 ) . For z ( s ) z(s) z ( s ) to be well-defined, it must be A a e a s ≤ 1 A a e^{as} \le 1 A a e a s ≤ 1 . Therefore,
s ≤ 1 a ln 1 a A
s \le \dfrac{1}{a}\ln \dfrac{1}{aA}
s ≤ a 1 ln a A 1
Now, let’s set a A e a t = sin ϕ aAe^{at} = \sin \phi a A e a t = sin ϕ .
a 2 A e a t d t = cos ϕ d ϕ ⟹ d t = cos ϕ a 2 A e a t d ϕ = cos ϕ a sin ϕ d ϕ
a^{2}Ae^{at} dt = \cos \phi d \phi \implies dt = \dfrac{\cos\phi}{a^{2}Ae^{at}}d\phi = \dfrac{\cos\phi}{a\sin\phi}d\phi
a 2 A e a t d t = cos ϕ d ϕ ⟹ d t = a 2 A e a t cos ϕ d ϕ = a sin ϕ cos ϕ d ϕ
z ( s ) z(s) z ( s ) is as follows:
z ( s ) = ± ∫ sin − 1 ( A a ) sin − 1 ( A a e a s ) 1 − sin 2 ϕ cos ϕ a sin ϕ d ϕ = ± ∫ sin − 1 ( A a ) sin − 1 ( A a e a s ) cos ϕ cos ϕ a sin ϕ d ϕ = ± 1 a ∫ sin − 1 ( A a ) sin − 1 ( A a e a s ) 1 − sin 2 ϕ sin ϕ d ϕ = ± 1 a ∫ sin − 1 ( A a ) sin − 1 ( A a e a s ) 1 sin ϕ − sin ϕ d ϕ = ± 1 a [ ln ( tan ϕ 2 ) + cos ϕ ] sin − 1 ( A a ) sin − 1 ( A a e a s )
\begin{align*}
z(s)
&= \pm \int _{\sin^{-1}(Aa)}^{\sin^{-1}(Aae^{as})} \sqrt{1 - \sin^{2}\phi} \dfrac{\cos \phi}{a \sin \phi} d\phi \\
&= \pm \int _{\sin^{-1}(Aa)}^{\sin^{-1}(Aae^{as})} \cos \phi \dfrac{\cos \phi}{a \sin \phi} d\phi \\
&= \pm \dfrac{1}{a}\int _{\sin^{-1}(Aa)}^{\sin^{-1}(Aae^{as})} \dfrac{1 - \sin^{2}\phi}{\sin \phi} d\phi \\
&= \pm\dfrac{1}{a} \int _{\sin^{-1}(Aa)}^{\sin^{-1}(Aae^{as})} \dfrac{1}{\sin\phi} - \sin \phi d \phi \\
&= \pm \dfrac{1}{a} \left[ \ln (\tan \frac{\phi}{2}) + \cos \phi \right]_{\sin^{-1}(Aa)}^{\sin^{-1}(Aae^{as})} \\
\end{align*}
z ( s ) = ± ∫ s i n − 1 ( A a ) s i n − 1 ( A a e a s ) 1 − sin 2 ϕ a sin ϕ cos ϕ d ϕ = ± ∫ s i n − 1 ( A a ) s i n − 1 ( A a e a s ) cos ϕ a sin ϕ cos ϕ d ϕ = ± a 1 ∫ s i n − 1 ( A a ) s i n − 1 ( A a e a s ) sin ϕ 1 − sin 2 ϕ d ϕ = ± a 1 ∫ s i n − 1 ( A a ) s i n − 1 ( A a e a s ) sin ϕ 1 − sin ϕ d ϕ = ± a 1 [ ln ( tan 2 ϕ ) + cos ϕ ] s i n − 1 ( A a ) s i n − 1 ( A a e a s )
Substituting,
z ( s ) = ± 1 a ( ln tan ( 1 2 sin − 1 ( A a e a s ) ) tan ( 1 2 sin − 1 ( A a ) ) + 1 − ( A a e a s ) 2 − 1 − ( A a ) 2 )
z(s) = \pm \dfrac{1}{a} \left( \ln \dfrac{\tan \left( \frac{1}{2}\sin^{-1}(Aae^{as}) \right)}{\tan \left( \frac{1}{2} \sin ^{-1}(Aa) \right)} + \sqrt{1 - (Aae^{as})^{2}} - \sqrt{1 - (Aa)^{2}}\right)
z ( s ) = ± a 1 ( ln tan ( 2 1 sin − 1 ( A a ) ) tan ( 2 1 sin − 1 ( A a e a s ) ) + 1 − ( A a e a s ) 2 − 1 − ( A a ) 2 )