logo

Differentiable Manifolds 📂Geometry

Differentiable Manifolds

Definition1

1.PNG

Let MM be an arbitrary set and UαRnU_{\alpha} \subset \mathbb{R}^{n} be an open set. For the function 111-1 xα:UαM\mathbf{x}_{\alpha} : U_{\alpha} \to M, the ordered pair (M,{xα}αA)\left( M, \left\{ \mathbf{x}_{\alpha} \right\}_{\alpha\in \mathscr{A}} \right), or simply MM, is defined as a differentiable manifold of dimension nn if the following conditions are met:

  1. αxα(Uα)=M\bigcup \limits_{\alpha} \mathbf{x}_{\alpha} \left( U_{\alpha} \right) = M
  2. For W=xα(Uα)xβ(Uβ)\varnothing \ne W = \mathbf{x}_{\alpha}\left( U_{\alpha} \right) \cap \mathbf{x}_{\beta}\left( U_{\beta} \right), the mapping xβ1xα:xα1(W)xβ1(W)\mathbf{x}_{\beta}^{-1} \circ \mathbf{x}_{\alpha} : \mathbf{x}_{\alpha}^{-1}(W) \to \mathbf{x}_{\beta}^{-1}(W) is differentiable.
  3. For all possible α\alpha that satisfy conditions 1 and 2, the index family {(Uα,xα)}\left\{ \left( U_{\alpha}, \mathbf{x}_{\alpha} \right) \right\} is constructed.

Description

  • Also simply called a differentiable manifold or smooth manifold. A nn-dimensional differential manifold is sometimes denoted by MnM^{n}.

  • When pxα(Uα)p \in \mathbf{x}_{\alpha}(U_{\alpha}), (Uα,xα)\left( U_{\alpha}, \mathbf{x}_{\alpha} \right) or simply xα\mathbf{x}_{\alpha} is called the coordinate system of MM at pp, local coordinate system, or parameterization.

  • The xα(Uα)\mathbf{x}_{\alpha}(U_{\alpha}) is called the coordinate neighborhood at pMp \in M.

  • The index family {(Uα,xα)}\left\{ \left( U_{\alpha}, \mathbf{x}_{\alpha} \right) \right\} satisfying condition 3. is called the differentiable structure on MM

  • For pMp \in M, functions xix_{i} that satisfy xα1(p)=(x1(p),,xn(p))\mathbf{x}_{\alpha}^{-1}(p) = \left( x_{1}(p), \dots, x_{n}(p) \right) are called coordinate functions.

  1. Because MM is given as a completely arbitrary set (i.e., not generally a metric space), there can be no discussion about whether xα\mathbf{x}_{\alpha} is differentiable or not. Moreover, since MM is a union of various images, a suitably good condition is needed at each intersection W=xα(Uα)xβ(Uβ)W = \mathbf{x}_{\alpha}\left( U_{\alpha} \right) \cap \mathbf{x}_{\beta}\left( U_{\beta} \right), which is given here as the condition of being differentiable.

    Depending on the condition of mapping xβ1xα\mathbf{x}_{\beta}^{-1} \circ \mathbf{x}_{\alpha}, the manifold is called various names. For instance, if the condition of being continuous is given instead of differentiable, then MM becomes a topological manifold. If the condition of being holomorphic is given, then MM becomes a complex manifold. Also, if xβ1xαCk\mathbf{x}_{\beta}^{-1} \circ \mathbf{x}_{\alpha} \in C^{k}, then MM is called a CkC^{k} manifold. In differential geometry, the tool of differentiation is used to describe geometry, hence the handling of differentiable manifolds.

  2. This content is a technical part, existing to avoid discussions about whether two differentiable structures are the same or different. Assuming that all such satisfying 1 and 2 have been gathered, it means, ‘How about this?’, ‘Is this also included?’ such tackles should not be thrown.

Example

Euclidean Space Rn\mathbb{R}^{n}

Rn={(x1,x2,,xn):xiR} \mathbb{R}^{n} = \left\{ (x_{1}, x_{2}, \dots, x_{n}) : x_{i} \in \mathbb{R} \right\}

It’s natural to consider Rn\mathbb{R}^{n} as a differentiable manifold because a manifold is locally similar to Euclidean space. Let’s call id{\rm id} the identity operator.

  1. The differentiable structure is established as {(Uα,id)UαRn is open.}\left\{ \left( U_{\alpha}, {\rm id} \right) | U_{\alpha} \subset \mathbb{R}^{n} \text{ is open.} \right\}.

  2. Since the identity operator is differentiable, it is established.

  3. For all such pairs, the index family {(Uα,id)}\left\{ \left( U_{\alpha}, {\rm id} \right)\right\} is constructed.

Thus, (Rn,{id})\left( \mathbb{R}^{n}, \left\{ {\rm id} \right\} \right) is a differentiable manifold.

2-dimensional Sphere S2\mathbb{S}^{2}

S2={pR3:p=1} \mathbb{S}^{2} = \left\{ p \in \mathbb{R}^{3} : \left\| p \right\|=1 \right\}

A 2-dimensional sphere can be represented with 6 coordinate patches as follows. For (u,v)U={(u,v):u2+v2<1}(u,v) \in U = \left\{ (u,v) : u^{2} + v^{2} \lt 1 \right\},

Coordinate PatchDefinitionInverse
x1=x(0,0,1):UR3\mathbf{x}_{1} = \mathbf{x}_{(0,0,1)} : U \to \R^{3}x(0,0,1)(u,v)=(u,v,1u2v2)\mathbf{x}_{(0,0,1)}(u, v) = \left( u, v , \sqrt{1- u^{2} -v^{2} } \right)x(0,0,1)1(x,y,z)=(x,y)\mathbf{x}_{(0,0,1)}^{-1}(x, y, z) = (x,y)
x2=x(0,0,1):UR3\mathbf{x}_{2} = \mathbf{x}_{(0,0,-1)} : U \to \R^{3}x(0,0,1)(u,v)=(u,v,1u2v2)\mathbf{x}_{(0,0,-1)}(u, v) = \left( u, v , -\sqrt{1- u^{2} -v^{2} } \right)x(0,0,1)1(x,y,z)=(x,y)\mathbf{x}_{(0,0,-1)}^{-1}(x, y, z) = (x,y)
x3=x(0,1,0):UR3\mathbf{x}_{3} = \mathbf{x}_{(0,1,0)} : U \to \R^{3}x(0,1,0)(u,v)=(u,1u2v2,v)\mathbf{x}_{(0,1,0)}(u, v) = \left( u, \sqrt{1- u^{2} -v^{2}}, v \right)x(0,1,0)1(x,y,z)=(x,z)\mathbf{x}_{(0,1,0)}^{-1}(x, y, z) = (x,z)
x4=x(0,1,0):UR3\mathbf{x}_{4} = \mathbf{x}_{(0,-1,0)} : U \to \R^{3}x(0,1,0)(u,v)=(u,1u2v2,v)\mathbf{x}_{(0,-1,0)}(u, v) = \left( u, -\sqrt{1- u^{2} -v^{2}}, v \right)x(0,1,0)1(x,y,z)=(x,z)\mathbf{x}_{(0,-1,0)}^{-1}(x, y, z) = (x,z)
x5=x(1,0,0):UR3\mathbf{x}_{5} = \mathbf{x}_{(1,0,0)} : U \to \R^{3}x(1,0,0)(u,v)=(1u2v2,u,v)\mathbf{x}_{(1,0,0)}(u, v) = \left( \sqrt{1- u^{2} -v^{2}}, u, v \right)x(1,0,0)1(x,y,z)=(y,z)\mathbf{x}_{(1,0,0)}^{-1}(x, y, z) = (y,z)
x6=x(1,0,0):UR3\mathbf{x}_{6} = \mathbf{x}_{(-1,0,0)} : U \to \R^{3}x(1,0,0)(u,v)=(1u2v2,u,v)\mathbf{x}_{(-1,0,0)}(u, v) = \left( -\sqrt{1- u^{2} -v^{2}}, u, v \right)x(1,0,0)1(x,y,z)=(y,z)\mathbf{x}_{(-1,0,0)}^{-1}(x, y, z) = (y,z)
  1. i=16xi=S2\bigcup \limits_{i=1}^6 \mathbf{x}_{i} = \mathbb{S}^{2} is established.

  2. x(0,0,1)1x(1,0,0)\mathbf{x}_{(0,0,1)}^{-1} \circ \mathbf{x}_{(1,0,0)}, being as follows, is differentiable.

x(0,0,1)1x(1,0,0)(u,v)=x(0,0,1)1(1u2v2,u,v)=(1u2v2,u)C\mathbf{x}_{(0,0,1)}^{-1} \circ \mathbf{x}_{(1,0,0)}(u,v) = \mathbf{x}_{(0,0,1)}^{-1} \left( \sqrt{1- u^{2} -v^{2}}, u, v \right) = \left( \sqrt{1- u^{2} -v^{2}}, u \right) \in C^{\infty}

  1. In this manner, for all pairs satisfying 1 and 2, the index family {(Uα,xα)}\left\{ \left( U_{\alpha}, \mathbf{x}_{\alpha} \right) \right\} is constructed.

Thus, (S2,{xα})\left( \mathbb{S}^{2} , \left\{ \mathbf{x}_{\alpha} \right\} \right) is a differentiable manifold.


  1. Manfredo P. Do Carmo, Riemannian Geometry (Eng Edition, 1992), p2-3 ↩︎