logo

Expectation of the Power of Normally Distributed Random Variables with Mean Zero 📂Probability Distribution

Expectation of the Power of Normally Distributed Random Variables with Mean Zero

Official

Random Variable XX follows a Normal Distribution N(0,σ2)N \left( 0 , \sigma^{2} \right), then the expectation of its powers XnX^{n} can be recursively expressed as follows1. E(Xn)=(n1)σ2E(Xn2) E \left( X^{n} \right) = (n - 1) \sigma^{2} E \left( X^{n-2} \right) E(Xn)E \left( X^{n} \right) is 00 when nn is odd, and for even it is given by the following2. E(X2n)=(2n1)!!σ2n E \left( X^{2n} \right) = \left( 2n - 1 \right)!! \sigma^{2n} Here, the symbol with two exclamation marks k!!=k(k2)k!! = k \cdot \left( k - 2 \right) \cdots represents the Double Factorial.

Explanation

As a well-known corollary, E(X4)=3σ4E \left( X^{4} \right) = 3 \sigma^{4} holds, and it can be used in the derivation of the Ito table, among others.

Derivation

There are two methods to obtain the result. The method through Gauss integration serves as a shortcut via a generalized formula, making the derivation easy and fast. The method through partial integration is somewhat tricky, but through the process, one can also obtain recursive formulas. Both methods start with the integration of E(Xn)E \left( X^{n} \right) as follows. E(Xn)=12πσxnex2/2σ2dx E \left( X^{n} \right) = \int_{-\infty}^{\infty} {\frac{ 1 }{ \sqrt{2 \pi} \sigma }} x^{n} e^{-x^{2} / 2 \sigma^{2}} dx

Method Using Gauss Integration

Generalization of Gauss Integration: Let nn be a natural number. x2neαx2dx=(2n)!n!22nπα2n+1x2n+1eαx2dx=0 \begin{align*} \int_{-\infty}^{\infty} x^{2n} e^{-\alpha x^{2}}dx =& \dfrac{(2n)!}{n! 2^{2n}}\sqrt{\dfrac{\pi}{\alpha^{2n+1}}} \\ \int_{-\infty}^{\infty} x^{2n+1} e^{-\alpha x^{2}}dx =& 0 \end{align*}

Product of Consecutive Odd Numbers: For an integer n0n \ge 0, the following holds. (2n1)(2n3)531=(2n)!2n(n!)=(2n1)!! (2n-1) \cdot (2n-3) \cdots 5 \cdot 3 \cdot 1 = \dfrac{(2n)!}{2^{n} (n!)} = (2n-1)!!

If nn is odd, it becomes E(Xn)=0E \left( X^{n} \right) = 0 by the formula without further ado. If nn is even, substitute α=1/2σ2\alpha = 1/2 \sigma^{2} to obtain the following. E(X2n)=12πσx2nex2/2σ2dx=12πσ(2n)!n!22nπ22n+1σ4n+2=(2n)!n!2n2n22nσ4n=(2n)!n!2n2n2nσ2n=(2n)!n!2nσ2n=(2n1)!!σ2n \begin{align*} E \left( X^{2n} \right) =& {\frac{ 1 }{ \sqrt{2 \pi} \sigma }} \int_{-\infty}^{\infty} x^{2n} e^{-x^{2} / 2 \sigma^{2}} dx \\ =& {\frac{ 1 }{ \sqrt{2 \pi} \sigma }} \frac{(2n)!}{n! 2^{2n}}\sqrt{\pi 2^{2n+1} \sigma^{4n+2}} \\ =& \frac{(2n)!}{n! 2^{n} 2^{n}}\sqrt{2^{2n} \sigma^{4n}} \\ =& \frac{(2n)!}{n! 2^{n} 2^{n}} 2^{n} \sigma^{2n} \\ =& \frac{(2n)!}{n! 2^{n}} \sigma^{2n} \\ =& (2n-1) !! \sigma^{2n} \end{align*}

Method Using Partial Integration

In:=tnet2/2dt I_{n} := \int_{-\infty}^{\infty} t^{n} e^{-t^{2} / 2} dt Let InI_{n} as shown above and use Integration by Parts. This part is somewhat tricky. In=tnet2/2dt=tn12t2et2/2dt=[tn1et2/2](n1)tn2et2/2dt=0(n1)In2 \begin{align*} - I_{n} =& - \int_{-\infty}^{\infty} t^{n} e^{-t^{2} / 2} dt \\ =& \int_{-\infty}^{\infty} t^{n-1} \cdot {\frac{ - 2 t }{ 2 }} e^{-t^{2} / 2} dt \\ =& \left[ t^{n-1} \cdot e^{-t^{2} / 2} \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} (n-1) t^{n-2} e^{-t^{2} / 2} dt \\ =& 0 - (n-1) I_{n-2} \end{align*} To summarize, it is In=(n1)In2I_{n} = (n-1) I_{n-2}, and applying it to the process of calculating E(Xn)E \left( X^{n} \right). Let t=x/σt = x / \sigma, then it becomes dx=σdtdx = \sigma dt, thus E(Xn)=12πσxnex2/2σ2dx=12πσ(σt)net2/2σdt=σn2πtnet2/2dt=σn2πIn=σn2π(n1)In2=(n1)σ2σn22πtn2et2/2dt=(n1)σ2σn22πtn2et2/2dt=(n1)σ2E(Xn2) \begin{align*} E \left( X^{n} \right) =& \int_{-\infty}^{\infty} {\frac{ 1 }{ \sqrt{2 \pi} \sigma }} x^{n} e^{-x^{2} / 2 \sigma^{2}} dx \\ =& \int_{-\infty}^{\infty} {\frac{ 1 }{ \sqrt{2 \pi} \sigma }} \left( \sigma t \right)^{n} e^{-t^{2} / 2 } \cdot \sigma dt \\ =& {\frac{ \sigma^{n} }{ \sqrt{2 \pi} }} \int_{-\infty}^{\infty} t^{n} e^{-t^{2} / 2 } dt \\ =& {\frac{ \sigma^{n} }{ \sqrt{2 \pi} }} I_{n} \\ =& {\frac{ \sigma^{n} }{ \sqrt{2 \pi} }} (n-1) I_{n-2} \\ =& (n-1) {\frac{ \sigma^{2} \cdot \sigma^{n-2} }{ \sqrt{2 \pi} }} \int_{-\infty}^{\infty} t^{n-2} e^{-t^{2} / 2} dt \\ =& (n-1) \sigma^{2} \int_{-\infty}^{\infty} {\frac{ \sigma^{n-2} }{ \sqrt{2 \pi} }} t^{n-2} e^{-t^{2} / 2} dt \\ =& (n-1) \sigma^{2} E \left( X^{n-2} \right) \end{align*} is obtained. Assuming XX follows a normal distribution with mean 00, we have E(X1)=0E \left( X^{1} \right) = 0, and for all odd nn, it is E(Xn)=0E \left( X^{n} \right) = 0. For even values, by expanding the recursive formula, the following result is obtained. E(X2n)=(2n1)σ2E(X2n2)=(2n1)σ2(2n3)σ2E(X2n4)=[(2n1)(2n3)1]σ2(n1)E(X2)=(2n1)!!σ2n \begin{align*} E \left( X^{2n} \right) =& (2n-1) \sigma^{2} E \left( X^{2n-2} \right) \\ =& (2n-1) \sigma^{2} \cdot (2n-3) \sigma^{2} E \left( X^{2n-4} \right) \\ \vdots& \\ =& [ (2n-1) (2n-3) \cdots 1 ] \sigma^{2(n-1)} E \left( X^{2} \right) \\ =& (2n-1)!! \sigma^{2n} \end{align*}


  1. grand_chat, Expected value of XnX^n for normal distribution, URL (version: 2020-11-10): https://math.stackexchange.com/q/2752327 ↩︎

  2. user65203, Proving E[X4]=3σ4E[X^4]=3σ^4, URL (version: 2018-11-26): https://math.stackexchange.com/q/1917666 ↩︎