logo

Frenet-Serret Formulas 📂Geometry

Frenet-Serret Formulas

Formulas 1

If α\alpha is a unit speed curve with κ(s)0\kappa (s) \ne 0 then T(s)=κ(s)N(s)N(s)=κ(s)T(s)+τ(s)B(s)B(s)=τ(s)N(s) \begin{align*} T^{\prime}(s) =& \kappa (s) N(s) \\ N^{\prime}(s) =& - \kappa (s) T(s) + \tau (s) B(s) \\ B^{\prime}(s) =& - \tau (s) N(s) \end{align*}

Description

In matrix form, it can be expressed as follows. [TNB]=[0κ0κ0τ0τ0][TNB] \begin{bmatrix} T \\ N \\ B \end{bmatrix} ^{\prime} = \begin{bmatrix} 0 & \kappa & 0 \\ - \kappa & 0 & \tau \\ 0 & - \tau & 0 \end{bmatrix} \begin{bmatrix} T \\ N \\ B \end{bmatrix}

Derivation

Lemma: In an nn-dimensional inner product space VV, if E={e1,,en}E = \left\{ e_{1} , \cdots , e_{n} \right\} is an orthogonal set, then EE forms a basis of VV, and for all vVv \in V v=k=1n<v,ek>ek v = \sum_{k=1}^{n} \left< v , e_{k} \right> e_{k}

Differentiation of Inner Products: <f,g>=<f,g>+<f,g>\left< f, g \right>^{\prime} = \left< f^{\prime}, g \right> + \left< f, g^{\prime} \right>

The Frenet-Serret Frame {T,N,B}\left\{ T, N, B \right\} forms an orthogonal basis of R3\mathbb{R}^{3}. It is directly derived using the above lemma.


Part 1. T(s)=κ(s)N(s)T^{\prime}(s) = \kappa (s) N(s)

From the definition of the normal vector, since N(s)=T(s)κ(s)N(s) = {{ T^{\prime}(s) } \over { \kappa (s) }} then T(s)=κ(s)N(s) T^{\prime}(s) = \kappa (s) N(s)


Part 2. N(s)=κ(s)T(s)+τ(s)B(s)N^{\prime}(s) = - \kappa (s) T(s) + \tau (s) B(s)

According to the lemma N(s)=<N,T>T+<N,N>N+<N,B>B N^{\prime}(s) = \left< N^{\prime} , T \right> T + \left< N^{\prime} , N \right> N + \left< N^{\prime} , B \right> B

  • Part 2-1. <N,T>=κ\left< N^{\prime} , T \right> = -\kappa
    • Since <N,T>=0\left< N, T \right> = 0, according to Part 1 0=<N,T>=<N,T>+<N,T>    <N,T>=<N,T>    <N,T>=<N,κN>=κN2=κ1 \begin{align*} & 0^{\prime} = \left< N , T \right>^{\prime} = \left< N^{\prime} , T \right> + \left< N , T^{\prime} \right> \\ \implies& \left< N^{\prime} , T \right> = - \left< N , T^{\prime} \right> \\ \implies& \left< N^{\prime} , T \right> = - \left< N , \kappa N \right> = - \kappa \left| N^{2} \right| = - \kappa \cdot 1 \end{align*}
  • Part 2-2. <N,N>=0\left< N^{\prime} , N \right> = 0
    • Since NN is a unit vector, N2=1\left| N^{2} \right| = 1 and by differentiating both sides 0=1=<N,N>=2<N,N>    <N,N>=0 \begin{align*} & 0 = 1^{\prime} = \left< N , N \right>^{\prime} = 2 \left< N , N^{\prime} \right> \\ \implies& \left< N , N^{\prime} \right> = 0 \end{align*}
  • Part 2-3. <N,B>=τ\left< N^{\prime} , B \right> = \tau
    • Since <N,B>=0\left< N, B \right> = 0, according to the definition of torsion τ(s):=<B(s),N(s)>\tau (s) := - \left< B^{\prime}(s) , N (s) \right> 0=<N,B>=<N,B>+<N,B>    <N,B>=<N,B>    <N,T>=τ \begin{align*} & 0^{\prime} = \left< N , B \right>^{\prime} = \left< N^{\prime} , B \right> + \left< N , B^{\prime} \right> \\ \implies& \left< N^{\prime} , B \right> = - \left< N , B^{\prime} \right> \\ \implies& \left< N^{\prime} , T \right> = \tau \end{align*}

This leads to the following. N(s)=κ(s)T(s)+τ(s)B(s) N^{\prime}(s) = - \kappa (s) T(s) + \tau (s) B(s)


Part 3. B(s)=τ(s)N(s)B^{\prime}(s) = - \tau (s) N(s)

According to the lemma B(s)=<B,T>T+<B,N>N+<B,B>B B^{\prime}(s) = \left< B^{\prime} , T \right> T + \left< B^{\prime} , N \right> N + \left< B^{\prime} , B \right> B

  • Part 3-1. <B,T>=0\left< B^{\prime} , T \right> = 0
    • Since <T,B>=0=<N,B>\left< T, B \right> = 0 = \left< N, B \right>, according to Part 1 0=<T,B>+<T,B>=κ<N,B>+<T,B>=<T,B> 0 = \left< T^{\prime}, B \right> + \left< T, B^{\prime} \right> = \kappa \left< N, B \right> + \left< T, B^{\prime} \right> = \left< T, B^{\prime} \right>
  • Part 3-2. <B,N>=τ\left< B^{\prime} , N \right> = -\tau
    • According to the definition of torsion and the symmetry of the inner product <B,N>=<N,B>=τ \left< B^{\prime} , N \right> = \left< N , B^{\prime} \right> = - \tau
  • Part 3-3. <B,B>=0\left< B^{\prime} , B \right> = 0
    • Since α\alpha is assumed to be a unit speed curve, B=T×NB = T \times N is also a unit vector. Similarly to Part 2-2 0=<B,B> 0 = \left< B^{\prime} , B \right>

This leads to the following. B(s)=τ(s)N(s) B^{\prime}(s) = - \tau (s) N(s)

Corollaries

  • Lancret’s Theorem: For a unit speed curve α\alpha being a helix is equivalent to some constant cRc \in \mathbb{R} for which τ=cκ\tau = c \kappa.
  • The curvature of the unit speed curve α\alpha being a constant κ>0\kappa > 0 and the torsion being τ=0\tau = 0 is equivalent to α\alpha being an arc of a circle with radius κ1\kappa^{-1}.
  • α\alpha being a straight line is equivalent to all tangents of α\alpha passing through some point x0R3x_{0} \in \mathbb{R}^{3}.
  • Let’s take a unit speed curve α\alpha with κ0\kappa \ne 0.

α\alpha lying on a plane is equivalent to all tangent planes being parallel.

  • If all normal planes of the unit speed curve α\alpha point towards some fixed point x0R3\mathbf{x}_{0} \in \mathbb{R}^{3}, then α\alpha lies on a sphere.

  1. Millman. (1977). Elements of Differential Geometry: p30. ↩︎