logo

Derivation of the Standard Normal Distribution as the Limiting Distribution of the Poisson Distribution 📂Probability Distribution

Derivation of the Standard Normal Distribution as the Limiting Distribution of the Poisson Distribution

Theorem

If XnPoi(n)X_{n} \sim \text{Poi} \left( n \right) and Yn:=Xnnn\displaystyle Y_{n} := {{ X_{n} - n } \over { \sqrt{n} }} are given YnDN(0,1) Y_{n} \overset{D}{\to} N(0,1)


  • N(μ,σ2)N \left( \mu , \sigma^{2} \right) is a normal distribution with a mean of μ\mu and a variance of σ2\sigma^{2}.
  • Poi(λ)\text{Poi} (\lambda) is a Poisson distribution with mean and variance of λ\lambda.

Explanation

Considering the approximation of the binomial distribution to the Poisson distribution, it is obvious that the standard normal distribution can also be derived from the Poisson distribution.

Derivation1

The moment generating function of YnY_{n}, MYn(t)M_{Y_{n}} (t), shows the convergence of the distribution.

Moment generating function of the Poisson distribution: m(t)=exp[λ(et1)],tR m(t) = \exp \left[ \lambda \left( e^{t} - 1 \right) \right] \qquad , t \in \mathbb{R}

Since XnPoi(n)X_{n} \sim \text{Poi} (n), MY(t)=E[exp(Ynt)]=E[exp(Xnnnt)]=E[exp(Xnnt)exp(tn)]=exp(tn)E[exp(Xntn)]=exp(tn)exp(n(et/n1)) \begin{align*} M_Y (t) =& E \left[ \text{exp} \left( Y_{n} t \right) \right] \\ =& E \left[ \text{exp} \left( {{ X_{n} - n } \over { \sqrt{n} }} t \right) \right] \\ =& E \left[ \text{exp} \left( {{ X_{n} } \over { \sqrt{n} }} t \right) \text{exp} ( -t \sqrt{n} ) \right] \\ =& \text{exp} ( -t \sqrt{n} ) E \left[ \text{exp} \left( X_{n} {{ t } \over { \sqrt{n} }} \right) \right] \\ =& \text{exp} ( -t \sqrt{n} ) \exp \left( n \left( e^{t/\sqrt{n}} - 1 \right) \right) \end{align*} Through the second argument’s Taylor expansion, exp(tn+n(1+tn+12!t2n+13!t3nn+1))=exp(tn+n(tn+12!t2n+13!t3nn+))=exp(tn+tn+t22!+13!t3n+)=exp(t22!+13!t3n+) \begin{align*} & \text{exp} \left( -t \sqrt{n} + n \left( 1 + {{t} \over {\sqrt{n}}} + {{1} \over {2!}} {{t^2} \over {n}} + {{1} \over {3!}} {{t^3} \over {n \sqrt{n} }} + \cdots - 1 \right) \right) \\ =& \text{exp} \left( -t \sqrt{n} + n \left( {{t} \over {\sqrt{n}}} + {{1} \over {2!}} {{t^2} \over {n}} + {{1} \over {3!}} {{t^3} \over {n \sqrt{n} }} + \cdots \right) \right) \\ =& \text{exp} \left( -t \sqrt{n} + t \sqrt{n} + {{t^2} \over {2!}} + {{1} \over {3!}} {{t^3} \over { \sqrt{n} }} + \cdots \right) \\ =& \text{exp} \left( {{t^2} \over {2!}} + {{1} \over {3!}} {{t^3} \over { \sqrt{n} }} + \cdots \right) \end{align*} Therefore, limnMYn=et22 \lim_{n \to \infty} M_{Y_{n}} = e^{ t^2 \over 2 }