logo

Linearity of Riemann(-Stieltjes) Iintegral 📂Analysis

Linearity of Riemann(-Stieltjes) Iintegral

Theorem1

  1. Let’s say ff is integrable by Riemann(-Stieltjes) from [a,b][a,b]. Then, for a constant cRc\in \mathbb{R}, cfcf is also integrable from [a,b][a,b], and its value is as follows.

abcfdα=cabfdα \int_{a}^{b}cf d\alpha = c\int_{a}^{b}f d\alpha

  1. Let two functions f1f_{1}, f2f_{2} be integrable by Riemann(-Stieltjes) from [a,b][a,b]. Then, f1+f2f_{1}+f_{2} is also integrable, and its value is as follows.

ab(f1+f2)dα=abf1dα+abf2dα \int _{a} ^{b}(f_{1}+f_{2})d\alpha = \int _{a} ^{b} f_{1}d\alpha + \int_{a}^{b} f_{2} d\alpha


It means that integration is linear.

ab(f1+cf2)dα=abf1dα+cabf2dα \int _{a} ^{b}(f_{1}+cf_{2})d\alpha = \int _{a} ^{b} f_{1}d\alpha + c\int_{a}^{b} f_{2} d\alpha

The reason for specifically mentioning sums and constant multiples separately is because they are proven separately.

Auxiliary Theorem

For a function ff that is integrable by Riemann(-Stieltjes) from [a,b][a,b] and any positive number ε>0\varepsilon> 0, there exists a partition PP of [a,b][a,b] that satisfies the following equation.

U(P,f,α)<abfdα+εabfdαε<L(P,f,α) \begin{align} U(P,f,\alpha) \lt \int_{a}^{b}f d\alpha +\varepsilon \tag{L1} \\ \int_{a}^{b}f d\alpha -\varepsilon \lt L(P,f,\alpha) \tag{L2} \end{align}

UU, LL are respectively the Riemann(-Stieltjes) upper sum and lower sum.

Proof

(L1)\eqref{L1}

Let’s say an arbitrary positive number ε>0\varepsilon \gt 0 is given. Then, by the necessary and sufficient condition for integrability, there exists a partition PP that satisfies the following equation.

U(P,f,α)L(P,f,α)<ε U(P,f,\alpha)-L(P,f,\alpha) \lt \varepsilon

Since L(P,f,α)abfdαL(P,f,\alpha) \le \displaystyle \int_{a}^{b}fd\alpha, the following holds.

U(P,f,α)abfdαU(P,f,α)L(P,f,α)<ε U(P,f,\alpha)-\int_{a}^{b}f d\alpha\le U(P,f,\alpha)-L(P,f,\alpha) \lt \varepsilon

Therefore, the summary is as follows.

U(P,f,α)<abfdα+ε U(P,f,\alpha ) \lt \int_{a}^{b}f d\alpha +\varepsilon

(L2)\eqref{L2}

As in the proof of (L1)\eqref{L1}, there exists a partition PP that satisfies the following.

U(P,f,α)L(P,f,α)<ε U(P,f,\alpha)-L(P,f,\alpha) \lt \varepsilon

Since abfdαU(P,f,α)\displaystyle \int_{a}^{b}fd\alpha \le U(P,f,\alpha), the following holds.

abfdαL(P,f,α)U(P,f,α)L(P,f,α)<ε \int_{a}^{b}f d\alpha-L(P,f,\alpha)\le U(P,f,\alpha)-L(P,f,\alpha) \lt \varepsilon

Therefore, the summary is as follows.

abfdαε<L(P,f,α) \int_{a}^{b}f d\alpha -\varepsilon \lt L(P,f,\alpha)

Proof

When f1,f2,ff_{1}, f_{2}, f is integrable, it will be shown that f1+f2,cff_{1}+f_{2}, cf is also integrable and that its actual value is equal to f1+f2,cf\displaystyle \int f_{1} + \int f_{2}, c\int f.


1.

  • Case 1. c=0c=0

    It is obvious that cf=0cf=0 is integrable. It is also obvious that the following equation holds.

    ab0fdα=0=0abfdα \int_{a}^{b}0fd\alpha=0=0\int_{a}^{b}fd\alpha

  • Case 2. c>0c>0

    Let’s say an arbitrary positive number ε>0\varepsilon >0 is given. Then, by the necessary and sufficient condition for integrability, there exists a partition P={a=x0<<xi<<xn=b}P=\left\{ a=x_{0} \lt \cdots \lt x_{i} \lt \cdots \lt x_{n}=b\right\} that satisfies the following.

    U(P,f,α)L(P,f,α)<εc \begin{equation} U(P,f,\alpha) - L(P,f,\alpha)<\frac{\varepsilon}{c} \end{equation}

    Let’s set it as follows.

    Mi=sup[xi1,xi]f(x)mi=inf[xi1,xi]f(x)Mic=sup[xi1,xi]cf(x)mic=inf[xi1,xi]cf(x) \begin{align*} M_{i} &= \sup _{[x_{i-1}, x_{i}]} f(x) \\ m_{i} &= \inf _{[x_{i-1}, x_{i}]} f(x) \\ M_{i}^{c} &= \sup _{[x_{i-1}, x_{i}]} cf(x) \\ m_{i}^{c} &= \inf _{[x_{i-1}, x_{i}]} cf(x) \end{align*}

    Since c>0c>0, cMi=MiccM_{i} = M_{i}^{c} holds, and cmi=miccm_{i} = m_{i}^{c}. Then, by the definition of Riemann-(Stieltjes) sum and (1)(1), the following holds.

    U(P,cf,α)L(P,cf,α)=i=1nMicΔαii=1nmicΔαi=i=1ncMiΔαii=1ncmiΔαi=c(i=1nMiΔαii=1nmiΔαi)=c[U(P,f,α)L(P,f,α)]<ε \begin{align} U(P,cf,\alpha)- L(P,cf,\alpha) &= \sum \limits_{i=1}^{n}M_{i}^{c}\Delta \alpha_{i}-\sum \limits_{i=1}^{n}m_{i}^{c}\Delta \alpha_{i} \nonumber\\ &= \sum \limits_{i=1}^{n}cM_{i}\Delta \alpha_{i}-\sum \limits_{i=1}^{n}cm_{i}\Delta \alpha_{i} \nonumber\\ &= c\left( \sum \limits_{i=1}^{n}M_{i}\Delta \alpha_{i}-\sum \limits_{i=1}^{n}m_{i}\Delta \alpha_{i} \right) \nonumber\\ &= c\Big[ U(P,f,\alpha)-L(P,f,\alpha)\Big] \nonumber\\ &\lt \varepsilon \end{align}

    Therefore, by the necessary and sufficient condition for integrability, cfcf is integrable. Since the integral is less than the upper sum, the following holds.

    cabfdαcU(P,f,α)=U(P,cf,α) c \int_{a}^{b}fd \alpha \le cU(P,f,\alpha) = U(P,cf,\alpha)

    Then, by (2)(2) and the Auxiliary Theorem, the following holds.

    cabfdαU(P,cf,α)ltabcfdα+ε c\int _{a}^{b}f d\alpha \le U(P,cf,\alpha) lt \int _{a}^{b} cf d\alpha +\varepsilon

    Since ε\varepsilon is assumed to be any positive number, the following holds.

    cabfdαabcfdα \begin{equation} c\int_{a}^{b}fd\alpha \le \int_{a}^{b}cfd\alpha \end{equation}

    The process of proving the opposite inequality is similar. By (1)(1) and the Auxiliary Theorem, the following holds.

    cU(P,f,α)cabfdα+ε cU(P,f,\alpha) \le c\int_{a}^{b}fd\alpha +\varepsilon

    Also, the following equation holds.

    abcfdαU(P,cf,α)=cU(P,f,α) \int_{a}^{b} cfd\alpha \le U(P,cf,\alpha)=cU(P,f,\alpha)

    From the above two equations, the following equation is obtained.

    abcfdαcU(P,f,α)<cabfdα+ε \int_{a}^{b} cfd \alpha \le cU(P,f,\alpha)< c\int_{a}^{b}fd\alpha +\varepsilon

    Since ε\varepsilon is any positive number, the following holds.

    abcfdαcabfdα \begin{equation} \int_{a}^{b} cf d\alpha \le c\int_{a}^{b}fd\alpha \end{equation}

    By (3)(3) and (4)(4), the following holds.

    abcfdα=cabfdα \int_{a}^{b}cfd\alpha = c\int_{a}^{b}fd\alpha

  • Case 3. c=1c=-1

    The proof process is similar to Case 2. First, let’s say an arbitrary positive number ε\varepsilon is given. Since ff is integrable, by the necessary and sufficient condition for integrability, there exists a partition PP for the given ε\varepsilon that satisfies the following.

    U(P,f,α)L(P,f,α)<ε U(P,f,\alpha) - L(P,f,\alpha) <\varepsilon

    Now, let’s set it as follows.

    Mi=sup[xi1,xi]fmi=inf[xi1,xi]fMi=sup[xi1,xi](f)mi=inf[xi1,xi](f) \begin{align*} M_{i} &= \sup _{[x_{i-1},x_{i}]}f \\ m_{i} &= \inf_{[x_{i-1},x_{i}]}f \\ M_{i}^{\ast} &= \sup _{[x_{i-1},x_{i}]}(-f) \\ m_{i}^{\ast} &= \inf_{[x_{i-1},x_{i}]}(-f) \end{align*}

    Since Mi=miM_{i}=-m_{i}^{\ast} and mi=Mim_{i}=-M_{i}^{\ast}, Mimi=MimiM_{i}-m_{i}=M_{i}^{\ast}-m_{i}^{\ast} holds. Therefore, the following holds.

    U(P,f,α)L(P,f,α)=i=1nMiΔαii=1nmiΔαi=i=1nMiΔαii=1nmiΔαi=U(P,f,α)L(P,f,α)<ε \begin{align*} U(P,-f,\alpha)-L(P,-f,\alpha) &= \sum\limits_{i=1}^{n}M_{i}^{\ast}\Delta \alpha_{i}-\sum\limits_{i=1}^{n}m_{i}^{\ast}\Delta \alpha_{i} \\ &= \sum\limits_{i=1}^{n}M_{i}\Delta \alpha_{i} - \sum\limits_{i=1}^{n}m_{i}\Delta\alpha_{i} \\ &= U(P,f,\alpha) -L(P,f,\alpha) \\ &\lt \varepsilon \end{align*}

    Therefore, f-f is integrable.

    As in the proof of Case 2., by the Auxiliary Theorem, the following holds.

    U(P,f,α)<ab(f)dα+ε U(P,-f,\alpha) \lt \int_{a}^{b}(-f)d\alpha +\varepsilon

    Also, the following equation holds.

    abfdαL(P,f,α)=U(P,f,α)<ab(f)dα+ε -\int_{a}^{b}fd\alpha\le -L(P,f,\alpha)=U(P,-f,\alpha) \lt \int_{a}^{b}(-f)d\alpha + \varepsilon

    Since ε\varepsilon is any positive number, the following holds. abfdαab(f)dα -\int_{a}^{b}fd\alpha \le \int_{a}^{b}(-f)d\alpha

    Then, by the Auxiliary Theorem, the following equation holds.

    ab(f)dαε<L(P,f,α)=U(P,f,α)abfdα \int_{a}^{b}(-f)d\alpha -\varepsilon \lt L(P,-f,\alpha)=-U(P,f,\alpha)\le-\int_{a}^{b}fd\alpha

    Since ε\varepsilon is any positive number, the following holds.

    ab(f)dαabfdα \int_{a}^{b}(-f)d\alpha \le -\int_{a}^{b}fd\alpha

    Therefore, the following is obtained.

    ab(f)dα=abfdα \int_{a}^{b}(-f)d\alpha =-\int_{a}^{b}fd\alpha

  • Case 4. c<0andc1c \lt 0 \quad \text{and} \quad c\ne -1

    It holds by Case 2. and Case 3.

2.

Let’s say f=f1+f2f=f_{1}+f_{2}. Let PP be any partition of [a,b][a,b]. Then, by the definition of Riemann(-Stieltjes) upper and lower sums, the following holds.

L(P,f1,α)+L(P,f2,α)L(P,f,α)U(P,f,α)U(P,f1,α)+U(P,f2,α) \begin{equation} \begin{aligned} L(P,f_{1},\alpha) + L(P,f_{2},\alpha)& \le L(P,f,\alpha) \\ &\le U(P,f,\alpha) \\ &\le U(P,f_{1},\alpha) +U(P,f_{2},\alpha) \end{aligned} \end{equation}

Let’s say an arbitrary positive number ε>0\varepsilon > 0 is given. Then, by the necessary and sufficient condition for integrability, there exists a partition PjP_{j} that satisfies the following.

U(Pj,fj,α)L(Pj,fj,α)<ε,(j=1,2) U(P_{j},f_{j},\alpha)-L(P_{j},f_{j},\alpha)<\varepsilon,\quad (j=1,2)

Now, let’s consider PP again as a common refinement of P1P_{1} and P2P_{2}. Then, by (5)(5), the following holds.

U(P,f,α)L(P,f,α)[U(P,f1,α)L(P,f1,α)]+[U(P,f2,α)L(P,f2,α)]<ε \begin{align*} U(P,f,\alpha)-L(P,f,\alpha) &\le \left[ U(P,f_{1},\alpha)-L(P,f_{1},\alpha) \right] + \left[ U(P,f_{2},\alpha)-L(P,f_{2},\alpha) \right] \\ &< \varepsilon \end{align*}

Therefore, by the necessary and sufficient condition for integrability, ff is integrable. Then, by the Auxiliary Theorem, the following equation holds.

U(P,fj,α)<abfjdα+ε,(j=1,2) U(P,f_{j},\alpha)<\int _{a}^{b}f_{j}d\alpha+\varepsilon,\quad (j=1,2)

Furthermore, by definition, since the upper sum is greater than the integral, the following holds.

abfdαU(P,f,α) \int_{a}^{b}fd\alpha \le U(P,f,\alpha)

From the above equation and the third inequality of (5)(5), the following holds.

abfdαU(P,f,α)U(P,f1,α)+U(P,f2,α)<abf1dα+abf2dα+2ε \begin{align*} \int_{a}^{b}fd\alpha &\le U(P,f,\alpha) \\ &\le U(P,f_{1},\alpha)+U(P,f_{2},\alpha) \\ &< \int_{a}^{b}f_{1}d\alpha +\int_{a}^{b}f_{2}d\alpha + 2\varepsilon \end{align*}

Since ε\varepsilon is any positive number, the following holds.

abfdαabf1dα+abf2dα \begin{equation} \int_{a}^{b} fd\alpha \le \int_{a}^{b}f_{1}d\alpha + \int_{a}^{b} f_{2}d\alpha \label{6} \end{equation}

Proving the opposite direction of the inequality completes the proof. Since it’s already shown above that a constant multiple of an integrable function is also integrable, f1,f2-f_{1}, -f_{2} is known to be integrable. Therefore, repeating the above process for these two functions yields the following equation.

ab(f)dαab(f1)dα+ab(f2)dα \int_{a}^{b}(-f)d\alpha \le \int_{a}^{b}(-f_{1})d\alpha + \int_{a}^{b} (-f_{2})d\alpha

Furthermore, since (f)dα=fdα\displaystyle \int (-f)d\alpha=-\int fd\alpha, by multiplying both sides by 1-1, the following is obtained.

abfdαabf1dα+abf2dα \begin{equation} \int_{a}^{b}fd\alpha \ge \int_{a}^{b}f_{1}d\alpha + \int_{a}^{b} f_{2}d\alpha \label{7} \end{equation}

Therefore, by (6)(6) and (7)(7), the following is obtained.

abfdα=abf1dα+abf2dα \int_{a}^{b}fd\alpha = \int_{a}^{b}f_{1}d\alpha + \int_{a}^{b} f_{2}d\alpha


  1. Walter Rudin, Principles of Mathematical Analysis (3rd Edition, 1976), p128-129 ↩︎