Fundamental Theorem of Algebra
📂Lebesgue Spaces Fundamental Theorem of Algebra Theorem Suppose that p , q , r ≥ 1 p, q, r \ge 1 p , q , r ≥ 1 satisfies 1 p + 1 q + 1 r = 2 \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{r} = 2 p 1 + q 1 + r 1 = 2 . Then, for all u ∈ L p ( R n ) {u \in L^{p}(\mathbb{R}^{n})} u ∈ L p ( R n ) , v ∈ L q ( R n ) {v \in L^{q}(\mathbb{R}^{n})} v ∈ L q ( R n ) , w ∈ L r ( R n ) {w \in L^{r}(\mathbb{R}^{n})} w ∈ L r ( R n ) , the following equation holds.
∣ ∫ R n ( u ∗ v ) ( x ) w ( x ) d x ∣ ≤ ∥ u ∥ p ∥ v ∥ q ∥ w ∥ r
\begin{equation}
\left| \int_{\mathbb{R}^{n}} (u \ast v)(x)w(x)dx \right| \le \left\| u \right\|_{p} \left\| v \right\|_{q} \left\| w \right\|_{r}
\end{equation}
∫ R n ( u ∗ v ) ( x ) w ( x ) d x ≤ ∥ u ∥ p ∥ v ∥ q ∥ w ∥ r
Here, u ∗ v u \ast v u ∗ v is the convolution of u u u and v v v .
Description This is called Young’s theorem .
The inequality ( 1 ) (1) ( 1 ) holds when there is a constant K = K ( p , q , r , n ) < 1 K=K(p, q, r, n)<1 K = K ( p , q , r , n ) < 1 on the right side. The best (smallest) constant is as follows.
K ( p , q , r , n ) = ( p 1 / p q 1 / q r 1 / r ( p ′ ) 1 / p ′ ( q ′ ) 1 / q ′ ( r ′ ) 1 / r ′ ) n / 2
K(p, q, r, n)=\left( \dfrac{ p^{1/p} q^{1/q} r^{1/r} }{ (p^{\prime})^{1/p^{\prime}}(q^{\prime})^{1/q^{\prime}}(r^{\prime})^{1/r^{\prime}} } \right)^{n/2}
K ( p , q , r , n ) = ( ( p ′ ) 1/ p ′ ( q ′ ) 1/ q ′ ( r ′ ) 1/ r ′ p 1/ p q 1/ q r 1/ r ) n /2
Proof Let’s call p , q , r p, q, r p , q , r ’s Hölder conjugates as p ′ , q ′ , r ′ p^{\prime}, q^{\prime}, r^{\prime} p ′ , q ′ , r ′ each.
1 p + 1 p ′ = 1 and 1 q + 1 q ′ = 1 and 1 r + 1 r ′ = 1
\frac{1}{p} + \frac{1}{p^{\prime}} = 1 \quad \text{and} \quad \frac{1}{q} + \frac{1}{q^{\prime}} = 1 \quad \text{and} \quad \frac{1}{r} + \frac{1}{r^{\prime}} = 1
p 1 + p ′ 1 = 1 and q 1 + q ′ 1 = 1 and r 1 + r ′ 1 = 1
Then, the following equation holds.
1 p ′ + 1 q ′ + 1 r ′ = 3 − 1 p − 1 q − 1 r = 1
\dfrac{1}{p^{\prime}} + \dfrac{1}{q^{\prime}} + \dfrac{1}{r^{\prime}} = 3 - \dfrac{1}{p} - \dfrac{1}{q} - \dfrac{1}{r} = 1
p ′ 1 + q ′ 1 + r ′ 1 = 3 − p 1 − q 1 − r 1 = 1
p q ′ + p r ′ = p ( 1 q ′ + 1 r ′ ) = p ( 1 − 1 p ′ ) = p ( 1 − p − 1 p ) = p − p + 1 = 1
\frac{p}{q^{\prime}}+\dfrac{p}{r^{\prime}}=p\left( \frac{1}{q^{\prime}}+\dfrac{1}{r^{\prime}} \right) =p\left(1-\dfrac{1}{p^{\prime}}\right)=p\left(1-\frac{p-1}{p} \right)=p-p+1=1
q ′ p + r ′ p = p ( q ′ 1 + r ′ 1 ) = p ( 1 − p ′ 1 ) = p ( 1 − p p − 1 ) = p − p + 1 = 1
Similarly,
r p ′ + r q ′ = 1 and q p ′ + q r ′ = 1
\dfrac{r}{p^{\prime}} + \dfrac{r}{q^{\prime}} = 1 \quad \text{and} \quad \dfrac{q}{p^{\prime}} + \dfrac{q}{r^{\prime}} = 1
p ′ r + q ′ r = 1 and p ′ q + r ′ q = 1
Therefore, for three functions
U ( x , y ) = ∣ v ( y ) ∣ q / p ′ ∣ w ( x ) ∣ r / p ′
U(x, y)=|v(y)|^{q/p^{\prime}}|w(x)|^{r/p^{\prime}}
U ( x , y ) = ∣ v ( y ) ∣ q / p ′ ∣ w ( x ) ∣ r / p ′
V ( x , y ) = ∣ u ( x − y ) ∣ p / q ′ ∣ w ( x ) ∣ r / q ′
V(x, y)=|u(x-y)|^{p/q^{\prime}}|w(x)|^{r/q^{\prime}}
V ( x , y ) = ∣ u ( x − y ) ∣ p / q ′ ∣ w ( x ) ∣ r / q ′
W ( x , y ) = ∣ u ( x − y ) ∣ p / r ′ ∣ v ( y ) ∣ q / r ′
W(x, y)=|u(x-y)|^{p/r^{\prime}}|v(y)|^{q/r^{\prime}}
W ( x , y ) = ∣ u ( x − y ) ∣ p / r ′ ∣ v ( y ) ∣ q / r ′
the next equation is satisfied.
( U V W ) ( x , y ) = u ( x − y ) v ( y ) w ( x )
(UVW)(x, y)=u(x-y)v(y)w(x)
( U VW ) ( x , y ) = u ( x − y ) v ( y ) w ( x )
Let’s calculate ∥ V ∥ q ′ \left\| V \right\|_{q^{\prime}} ∥ V ∥ q ′ .
∣ V ∣ q ′ = ( ∫ R n ∫ R n ∣ u ( x − y ) ∣ p ∣ w ( x ) ∣ r d x d y ) 1 / q ′ = ( ∫ R n ( ∫ R n ∣ u ( x − y ) ∣ p d y ) ∣ w ( x ) ∣ r d x ) 1 / q ′
\begin{align*}
|V |_{q^{\prime}} =&\ \left( \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |u(x-y)|^p |w(x)|^r dxdy\right)^{1/q^{\prime}}
\\ =&\ \left( \int_{\mathbb{R}^n} \left( \int_{\mathbb{R}^n} |u(x-y)|^p dy \right) |w(x)|^rdx \right)^{1/q^{\prime}}
\end{align*}
∣ V ∣ q ′ = = ( ∫ R n ∫ R n ∣ u ( x − y ) ∣ p ∣ w ( x ) ∣ r d x d y ) 1/ q ′ ( ∫ R n ( ∫ R n ∣ u ( x − y ) ∣ p d y ) ∣ w ( x ) ∣ r d x ) 1/ q ′
The second equality is due to Fubini’s theorem . When you look at the inner bracket on the second line, you can see that it is the norm of u u u irrespective of the value of x x x . Replacing it with x − y = z x-y=z x − y = z ,
∫ R n ∣ u ( x − y ) ∣ p d y = ∫ R n ∣ u ( z ) ∣ p d z = ∥ u ∥ p p
\int_{\mathbb{R}^n} |u(x-y)|^p dy = \int_{\mathbb{R}^n} |u(z)|^pdz = \left\| u \right\|_{p}^p
∫ R n ∣ u ( x − y ) ∣ p d y = ∫ R n ∣ u ( z ) ∣ p d z = ∥ u ∥ p p
Therefore, the above equation is
∥ V ∥ q ′ = ∥ u ∥ p p / q ′ ( ∫ R n ∣ w ( x ) ∣ r d x ) 1 / q ′ = ∥ u ∥ p p / q ′ ∥ w ∥ r r / q ′
\begin{align*}
\left\| V \right\|_{q^{\prime}} =&\ \left\| u \right\|_{p}^{p/q^{\prime}}\left( \int_{\mathbb{R}^n}|w(x)|^rdx \right)^{1/q^{\prime}}
\\ =&\ \left\| u \right\|_{p}^{p/q^{\prime}} \left\| w \right\|_{r}^{r/q^{\prime}}
\end{align*}
∥ V ∥ q ′ = = ∥ u ∥ p p / q ′ ( ∫ R n ∣ w ( x ) ∣ r d x ) 1/ q ′ ∥ u ∥ p p / q ′ ∥ w ∥ r r / q ′
Since ∥ u ∥ p , ∥ w ∥ r \left\| u \right\|_{p}, \left\| w \right\|_{r} ∥ u ∥ p , ∥ w ∥ r exists, ∥ v ∥ q ′ \left\| v \right\|_{q^{\prime}} ∥ v ∥ q ′ also exists, and its value is as above. Similarly,
∥ U ∥ p ′ = ∥ v ∥ q q / p ′ ∥ w ∥ r r / q ′
\left\| U \right\|_{p^{\prime}}=\left\| v \right\|_{q}^{q/p^{\prime}}\left\| w \right\|_{r}^{r/q^{\prime}}
∥ U ∥ p ′ = ∥ v ∥ q q / p ′ ∥ w ∥ r r / q ′
is valid, and
∥ W ∥ r ′ = ∥ u ∥ p p / r ′ ∥ v ∥ q q / r ′
\left\| W \right\|_{r^{\prime}} = \left\| u \right\|_{p}^{p/r^{\prime}} \left\| v \right\|_{q}^{q/r^{\prime}}
∥ W ∥ r ′ = ∥ u ∥ p p / r ′ ∥ v ∥ q q / r ′
Using these results, when applying the Hölder’s inequality for three functions ,
∣ ∫ R n ( u ∗ v ) ( x ) w ( x ) d x ∣ ≤ ∫ R n ∫ R n ∣ u ( x − y ) ∣ ∣ v ( y ) ∣ ∣ w ( x ) ∣ d y d x = ∫ R n ∫ R n U ( x , y ) V ( x , y ) W ( x , y ) d y d x ≤ ∥ U ∥ p ′ ∥ V ∥ q ′ ∥ W ∥ r ′ = ∥ u ∥ p ∥ v ∥ q ∥ w ∥ r
\begin{align*}
\left| \int_{\mathbb{R}^n} (u \ast v)(x)w(x)dx \right| \le& \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |u(x-y)|\ |v(y)|\ |w(x)| dy dx
\\ =&\ \int_{\mathbb{R}^n} \int_{\mathbb{R}^n}U(x, y) V(x, y) W(x, y) dy dx
\\ \le & \left\| U \right\|_{p^{\prime}} \left\| V \right\|_{q^{\prime}} \left\| W \right\|_{r^{\prime}}
\\ =&\ \left\| u \right\|_{p} \left\| v \right\|_{q} \left\| w \right\|_{r}
\end{align*}
∫ R n ( u ∗ v ) ( x ) w ( x ) d x ≤ = ≤ = ∫ R n ∫ R n ∣ u ( x − y ) ∣ ∣ v ( y ) ∣ ∣ w ( x ) ∣ d y d x ∫ R n ∫ R n U ( x , y ) V ( x , y ) W ( x , y ) d y d x ∥ U ∥ p ′ ∥ V ∥ q ′ ∥ W ∥ r ′ ∥ u ∥ p ∥ v ∥ q ∥ w ∥ r
■
Note