logo

Fundamental Theorem of Algebra 📂Lebesgue Spaces

Fundamental Theorem of Algebra

Theorem1

Suppose that p,q,r1p, q, r \ge 1 satisfies 1p+1q+1r=2\dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{r} = 2. Then, for all uLp(Rn){u \in L^{p}(\mathbb{R}^{n})}, vLq(Rn){v \in L^{q}(\mathbb{R}^{n})}, wLr(Rn){w \in L^{r}(\mathbb{R}^{n})}, the following equation holds.

Rn(uv)(x)w(x)dxupvqwr \begin{equation} \left| \int_{\mathbb{R}^{n}} (u \ast v)(x)w(x)dx \right| \le \left\| u \right\|_{p} \left\| v \right\|_{q} \left\| w \right\|_{r} \end{equation}

Here, uvu \ast v is the convolution of uu and vv.

Description

This is called Young’s theorem.

The inequality (1)(1) holds when there is a constant K=K(p,q,r,n)<1K=K(p, q, r, n)<1 on the right side. The best (smallest) constant is as follows.

K(p,q,r,n)=(p1/pq1/qr1/r(p)1/p(q)1/q(r)1/r)n/2 K(p, q, r, n)=\left( \dfrac{ p^{1/p} q^{1/q} r^{1/r} }{ (p^{\prime})^{1/p^{\prime}}(q^{\prime})^{1/q^{\prime}}(r^{\prime})^{1/r^{\prime}} } \right)^{n/2}

Proof

Let’s call p,q,rp, q, r’s Hölder conjugates as p,q,rp^{\prime}, q^{\prime}, r^{\prime} each.

1p+1p=1and1q+1q=1and1r+1r=1 \frac{1}{p} + \frac{1}{p^{\prime}} = 1 \quad \text{and} \quad \frac{1}{q} + \frac{1}{q^{\prime}} = 1 \quad \text{and} \quad \frac{1}{r} + \frac{1}{r^{\prime}} = 1

Then, the following equation holds.

1p+1q+1r=31p1q1r=1 \dfrac{1}{p^{\prime}} + \dfrac{1}{q^{\prime}} + \dfrac{1}{r^{\prime}} = 3 - \dfrac{1}{p} - \dfrac{1}{q} - \dfrac{1}{r} = 1

pq+pr=p(1q+1r)=p(11p)=p(1p1p)=pp+1=1 \frac{p}{q^{\prime}}+\dfrac{p}{r^{\prime}}=p\left( \frac{1}{q^{\prime}}+\dfrac{1}{r^{\prime}} \right) =p\left(1-\dfrac{1}{p^{\prime}}\right)=p\left(1-\frac{p-1}{p} \right)=p-p+1=1

Similarly,

rp+rq=1andqp+qr=1 \dfrac{r}{p^{\prime}} + \dfrac{r}{q^{\prime}} = 1 \quad \text{and} \quad \dfrac{q}{p^{\prime}} + \dfrac{q}{r^{\prime}} = 1

Therefore, for three functions

U(x,y)=v(y)q/pw(x)r/p U(x, y)=|v(y)|^{q/p^{\prime}}|w(x)|^{r/p^{\prime}}

V(x,y)=u(xy)p/qw(x)r/q V(x, y)=|u(x-y)|^{p/q^{\prime}}|w(x)|^{r/q^{\prime}}

W(x,y)=u(xy)p/rv(y)q/r W(x, y)=|u(x-y)|^{p/r^{\prime}}|v(y)|^{q/r^{\prime}}

the next equation is satisfied.

(UVW)(x,y)=u(xy)v(y)w(x) (UVW)(x, y)=u(x-y)v(y)w(x)

Let’s calculate Vq\left\| V \right\|_{q^{\prime}}.

Vq= (RnRnu(xy)pw(x)rdxdy)1/q= (Rn(Rnu(xy)pdy)w(x)rdx)1/q \begin{align*} |V |_{q^{\prime}} =&\ \left( \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |u(x-y)|^p |w(x)|^r dxdy\right)^{1/q^{\prime}} \\ =&\ \left( \int_{\mathbb{R}^n} \left( \int_{\mathbb{R}^n} |u(x-y)|^p dy \right) |w(x)|^rdx \right)^{1/q^{\prime}} \end{align*}

The second equality is due to Fubini’s theorem. When you look at the inner bracket on the second line, you can see that it is the norm of uu irrespective of the value of xx. Replacing it with xy=zx-y=z,

Rnu(xy)pdy=Rnu(z)pdz=upp \int_{\mathbb{R}^n} |u(x-y)|^p dy = \int_{\mathbb{R}^n} |u(z)|^pdz = \left\| u \right\|_{p}^p

Therefore, the above equation is

Vq= upp/q(Rnw(x)rdx)1/q= upp/qwrr/q \begin{align*} \left\| V \right\|_{q^{\prime}} =&\ \left\| u \right\|_{p}^{p/q^{\prime}}\left( \int_{\mathbb{R}^n}|w(x)|^rdx \right)^{1/q^{\prime}} \\ =&\ \left\| u \right\|_{p}^{p/q^{\prime}} \left\| w \right\|_{r}^{r/q^{\prime}} \end{align*}

Since up,wr\left\| u \right\|_{p}, \left\| w \right\|_{r} exists, vq\left\| v \right\|_{q^{\prime}} also exists, and its value is as above. Similarly,

Up=vqq/pwrr/q \left\| U \right\|_{p^{\prime}}=\left\| v \right\|_{q}^{q/p^{\prime}}\left\| w \right\|_{r}^{r/q^{\prime}}

is valid, and

Wr=upp/rvqq/r \left\| W \right\|_{r^{\prime}} = \left\| u \right\|_{p}^{p/r^{\prime}} \left\| v \right\|_{q}^{q/r^{\prime}}

Using these results, when applying the Hölder’s inequality for three functions,

Rn(uv)(x)w(x)dxRnRnu(xy) v(y) w(x)dydx= RnRnU(x,y)V(x,y)W(x,y)dydxUpVqWr= upvqwr \begin{align*} \left| \int_{\mathbb{R}^n} (u \ast v)(x)w(x)dx \right| \le& \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |u(x-y)|\ |v(y)|\ |w(x)| dy dx \\ =&\ \int_{\mathbb{R}^n} \int_{\mathbb{R}^n}U(x, y) V(x, y) W(x, y) dy dx \\ \le & \left\| U \right\|_{p^{\prime}} \left\| V \right\|_{q^{\prime}} \left\| W \right\|_{r^{\prime}} \\ =&\ \left\| u \right\|_{p} \left\| v \right\|_{q} \left\| w \right\|_{r} \end{align*}

Note


  1. Robert A. Adams and John J. F. Foutnier, Sobolev Space (2nd Edition, 2003), p33-34 ↩︎