컴팩트 공간과 연속함수에 대한 유용한 성질들

컴팩트 공간과 연속함수에 대한 유용한 성질들

정리

$f : X \to Y$ 에 대해 $X$ 가 컴팩트, $f$ 가 연속이라고 하자.

설명

별 시덥잖은 성질이 다 있다는 생각이 들겠지만 최대최소값 정리를 증명할 때 쓰이는 등 쓰임새가 많다.

[1]

컴팩트연속함수를 취했을 때 여전히 보존되는 성질임을 의미한다.

[2]

닫힘에 대한 이야기를 하고 있지만 하우스도르프에 대한 이야기인만큼 여기저기 잘 쓰인다. 모든 거리 공간은 $T_{2}$ 공간이므로 어지간하면 통한다고 봐도 좋다.

[3]

조건이 많지만 위상동형사상의 정의에서 역함수 역시 연속임을 내포한다는 것이 포인트다. 역함수의 연속성을 직접 체크하는 것보다 정의역과 공역의 위상적 성질을 파악하는 것이 쉽다면 아주 유용할 것이다.

[4]

균등연속은 원래 거리공간에서만 논하는 개념인데, $X$ 가 컴팩트 공간이 되면 $f$ 가 연속성뿐만 아니라 균등연속성까지 가짐을 보장하므로 유용하다. 컴팩트와 연속은 아주 다른 개념에서 출발하지만, 이처럼 여러가지로 많이 얽혀있어 뗄레야 뗄 수가 없다.

댓글