베셀 함수의 재귀 관계

베셀 함수의 재귀 관계

the recurrence relation of the bessel function


🚧 이 포스트는 아직 이관 작업이 완료되지 않았습니다 🚧

제1 종 베셀 함수 $J_{\nu}(x)$는 아래의 식을 만족한다. $$ \leqalignno{& \frac{ d }{ dx }[x^{\nu} J_{\nu}(x)] =x^{\nu}J_{\nu-1}(x) & (a) \\ & \frac{ d }{ dx }[x^{-\nu}J_{\nu}(x)]=-x^{-\nu}J_{\nu+1}(x) & (b) \\ & J_{\nu-1}(x)+J_{\nu+1}(x)=\frac{2\nu}{x}J_{\nu}(x) & (c) \\ & J_{\nu-1}(x)-J_{\nu+1}(x)=2J’_{\nu}(x) & (d) \\ & J_{\nu}’(x)=-\frac{\nu}{x}J_{\nu}(x)+J_{\nu-1}(x)=\frac{\nu}{x}J_{\nu}(x)-J_{\nu+1}(x) & (e) } $$

상수 $\nu$에 대한 제1 종베셀 함수는 다음과 같다. $$ J_{\nu}(x)=\sum \limits_{n=0}^{\infty} \frac{(-1)^{n} }{\Gamma(n+1) \Gamma(n+\nu+1)} \left(\frac{x}{2} \right)^{2n+\nu}\tag{1} $$

증명 $(a)$

$(1)$에 $x^{\nu}$를 곱한 뒤 미분하면 쉽게 얻을 수 있다. $$ \begin{align*} \frac{ d }{ dx }[x^{\nu} J_{\nu}(x)] &= \frac{ d }{ dx } \left[ x^{\nu} \sum \limits_{n=0}^{\infty} \frac{(-1)^{n} }{\Gamma(n+1) \Gamma(n+\nu+1)} \left(\frac{x}{2} \right)^{2n+\nu} \right] \\ &=\frac{ d }{ dx } \sum \limits_{n=0}^{\infty} \frac{(-1)^{n} }{\Gamma(n+1) \Gamma(n+\nu+1)} \frac{x^{2n+2\nu}}{2^{2n+\nu}} \\ &= \sum \limits_{n=0}^{\infty} \frac{(-1)^{n}(2n+2\nu) }{\Gamma(n+1) \Gamma(n+\nu+1)} \frac{x^{2n+2\nu-1}}{2^{2n+\nu}} \tag{2} \end{align*} $$ 감마함수는 관계식 $\Gamma (n+\nu+1)=(n+\nu)\Gamma(n+\nu)$를 만족하므로 $(2)$의 분모의 $2(n+\nu)$를 약분하면 $$ \begin{align*} \frac{ d }{ dx }[x^{\nu} J_{\nu}(x)] &= \sum \limits_{n=0}^{\infty} \frac{(-1)^{n} }{\Gamma(n+1) \Gamma(n+\nu)} \frac{x^{2n+2\nu-1}}{2^{2n+\nu-1}} \\ &= x^{\nu}\sum \limits_{n=0}^{\infty} \frac{(-1)^{n} }{\Gamma(n+1) \Gamma(n+\nu)} \frac{x^{2n+\nu-1}}{2^{2n+\nu-1}} \\ &= x^{\nu}J_{\nu-1}(x) \end{align*} $$

증명 $(b)$

증명 방법의 큰 틀은 $(a)$와 같으나 놓치기 쉬운 부분이 있어서 생략없이 설명한다. $(a)$와 같이 $(1)$에 $x^{-\nu}$를 곱한뒤 미분하면 $$ \begin{align*} \frac{ d }{ dx }[x^{-\nu} J_{\nu}(x)] &=\frac{ d }{ dx } \sum \limits_{n=0}^{\infty} \frac{(-1)^{n} }{\Gamma(n+1) \Gamma(n+\nu+1)} \frac{x^{2n}}{2^{2n+\nu}} \\ &= \sum \limits_{n=0}^{\infty} \frac{(-1)^{n}2n }{\Gamma(n+1) \Gamma(n+\nu+1)} \frac{x^{2n-1}}{2^{2n+\nu}} \end{align*} $$ $\Gamma(n+1)=n\Gamma(n)$이므로 분모의 $2n$을 약분하고 $\frac{x}{2}$의 차수를 맞춰주면 $$ \begin{align*} \frac{ d }{ dx }[x^{-\nu} J_{\nu}(x)] &= x^{-\nu}\sum \limits_{n=0}^{\infty} \frac{(-1)^{n} }{\Gamma(n) \Gamma(n+\nu+1)} \frac{x^{2n+\nu-1}}{2^{2n+\nu-1}} \end{align*} $$ 여기서 인덱스를 $n=k+1$로 치환해주자. 그러면 $$ \begin{align*} \frac{ d }{ dx }[x^{-\nu} J_{\nu}(x)] &= x^{-\nu}\sum \limits_{k=-1}^{\infty} \frac{(-1)^{k+1} }{\Gamma(k+1) \Gamma(k+\nu+2)} \frac{x^{2k+\nu+1}}{2^{2k+\nu+1}} \end{align*} $$ 이때 $k=-1$이면 분모가 $\Gamma(k+1)=\Gamma(0)=\infty$로 발산하므로 $0$이다. 따라서 인덱스가 $k=0$부터 시작해도 무관하다. $$ \begin{align*} \frac{ d }{ dx }[x^{-\nu} J_{\nu}(x)] &= x^{-\nu}\sum \limits_{k=0}^{\infty} \frac{(-1)^{k+1} }{\Gamma(k+1) \Gamma(k+\nu+2)} \frac{x^{2k+\nu+1}}{2^{2k+\nu+1}} \\ &=-x^{-\nu}J_{\nu+1}(x) \end{align*} $$

증명 $(c)$, $(d)$

$(a)$를 $J_{\nu-1}(x)$에 대해서 정리하고 $(b)$를 $J_{\nu+1}(x)$에 대해서 정리한 뒤 더하고 빼주면 바로 얻을 수 있다. $$ \begin{align*} J_{\nu-1}(x) &= x^{-\nu} \frac{ d }{ d x }\left[x^{\nu} J_{\nu}(x) \right] \\ &= x^{-\nu} \nu x^{\nu-1}J_{\nu}(x)+x^{-\nu}x^{\nu}J_{\nu}’(x) \\ &= \nu x^{-1}J_{\nu}(x) + J_{\nu}’(x) \end{align*} \tag{3} $$

$$ \begin{align*} J_{\nu+1}(x) &= -x^{\nu} \frac{ d }{ d x }\left[x^{-\nu} J_{\nu}(x) \right] \\ &= -x^{\nu}(-\nu) x^{-\nu-1}J_{\nu}(x)-x^{\nu}x^{-\nu}J_{\nu}’(x) \\ &= \nu x^{-1}J_{\nu}(x) - J_{\nu}’(x) \end{align*} \tag{4} $$ $(3)+(4)$를 계산하면 $$ J_{\nu-1}+J_{\nu+1}(x)=\frac{2\nu}{x}J_{\nu}(x) $$ $(3)-(4)$를 계산하면 $$ J_{\nu-1}-J_{\nu+1}(x)=2J_{\nu}’(x) $$

증명 $(e)$

$(a)$와 $(b)$의 좌변을 풀어서 정리하면 쉽게 얻을 수 있다. 먼저 $(a)$의 좌변을 풀고 $J_{\nu}’(x)$에 대해서 정리하면 $$ \begin{align*} \frac{ d }{ dx }[x^{\nu} J_{\nu}(x)] &=x^{\nu}J_{\nu-1}(x) \\ \nu x^{\nu-1}J_{\nu}(x) + x^{\nu} J_{\nu}’(x) &=x^{\nu}J_{\nu-1}(x) \\ J_{\nu}’(x) &= -\frac{\nu}{x}J_{\nu}(x)+J_{\nu-1}(x) \end{align*}
$$ $(b)$에 대해서도 같은 작업을 해주면 $$ \begin{align*} \frac{ d }{ dx }[x^{-\nu} J_{\nu}(x)] &=-x^{-\nu}J_{\nu+1}(x) \\ -\nu x^{-\nu-1}J_{\nu}(x) + x^{-\nu} J_{\nu}’(x) &=-x^{-\nu}J_{\nu+1}(x) \\ J_{\nu}’(x) &= \frac{\nu}{x}J_{\nu}(x)-J_{\nu+1}(x) \end{align*}
$$ 따라서 $$ J_{\nu}’(x)=-\frac{\nu}{x}J_{\nu}(x)+J_{\nu-1}(x)=\frac{\nu}{x}J_{\nu}(x)-J_{\nu+1}(x) $$

댓글