라플라스 변환을 이용한 2계 선형 비동차 미분방정식의 풀이

라플라스 변환을 이용한 2계 선형 비동차 미분방정식의 풀이

정리1

$$ ay^{\prime \prime} + by^{\prime} + cy = g(t) $$

위와 같은 2계 선형 비동차 미분방정식이 주어졌다고 하자. 그리고 $\mathcal{L} \left\{ y \right\} =Y(s)$, $\mathcal{L} \left\{ g(t) \right\}=G(s)$라고 하자. 그러면

$$ Y(s) = \dfrac{ (as + b)y(0) + ay^{\prime}(0) } {as^2+bs+c} + \dfrac{G(s) }{as^2+bs+c} $$

설명

위 공식은 규칙만 잘 기억하면 외우기 쉽다. 규칙대로 외우면 3계, 4계의 경우를 포함하는 일반적인 공식까지도 쉽게 외울 수 있다. 위 결과는 n계 도함수의 라플라스 변환 결과를 알고 있으면 쉽게 이끌어 낼 수 있다. 초기 조건인 $y(0)$와 $y^{\prime}(0)$를 안다면 정확한 해를 구할 수 있다. 또한 n계 도함수의 라플라스 변환을 이용하면 3계, 4계 미분방정식의 풀이도 가능하다.

증명

주어진 미분방정식 $ay^{\prime \prime} + by^{\prime} + cy = g(t)$의 양변에 라플라스 변환을 취하고 $Y(s)$에 대해서 정리해주기만 하면 된다.

도함수의 라플라스 변환

$$ \begin{align*} \mathcal{L} \left\{ f^{\prime}(t) \right\} &= s\mathcal{L} \left\{ f(t) \right\} -f^{\prime}(0) \\ \mathcal{L} \left\{ f^{\prime \prime}(t) \right\} &= s^2\mathcal{L} \left\{ f(t) \right\} -sf(0) -f^{\prime}(0) \end{align*} $$

$$ \begin{align*} && a\left[ s^2Y(s) -sy(0) -y^{\prime}(0) \right] +b\left[ sY(s) -y(0) \right] +cY(s) = G(s) \\ \implies && (as^2+bs+c)Y(s) - (as+b)y(0) -ay^{\prime}(0) = G(s) \\ \implies && (as^2+bs+c)Y(s) = (as+b)y(0) + ay^{\prime}(0) + G(s) \\ \implies && Y(s) =\dfrac{(as+b)y(0) +ay^{\prime}(0)}{as^2+bs+c} + \dfrac{G(s)}{as^2+bs+c} \end{align*} $$

예제

1

다음과 같이 주어진 초기값 문제를 풀어라.

$$ y^{\prime \prime}-y^{\prime}-2y=0,\quad y(0)=1,\quad y^{\prime}(0)=0 $$

각 상수와 초기 조건을 공식에 대입하면

$$ \begin{align*} Y(s) &= \dfrac{s-1}{s^2-s-2} \\ &=\dfrac{s-1}{(s-2)(s+1)} \\ &= \dfrac{1}{3}\dfrac{1}{s-2} + \dfrac{2}{3}\dfrac{1}{s+1} \end{align*} $$

$\mathcal{L^{-1}} \left\{ \dfrac{1}{s-a} \right\}=e^{at}$이므로

$$ y(t)=\dfrac{1}{3}e^{2t} + \dfrac{2}{3}e^{-t} $$

2

다음과 같이 주어진 초기값 문제를 풀어라.

$$ y^{\prime \prime}+y=\sin (2t),\quad y(0)=2,\quad y^{\prime}(0)=1 $$

각 상수와 초기 조건을 공식에 대입하면

$$ \begin{align*} Y(s)&=\dfrac{2s+1}{s^2+1} + \dfrac{1}{s^2+1}\dfrac{2}{s^2+2^2} \\ &=2\dfrac{s}{s^2+1}+\dfrac{1}{s^2+1}+\dfrac{2}{3}\dfrac{1}{s^2+1}-\dfrac{1}{3}\dfrac{2}{s^2+2^2} \\ &= 2\dfrac{s}{s^2+1}+\dfrac{5}{3}\dfrac{1}{s^2+1}-\dfrac{1}{3}\dfrac{2}{s^2+2^2} \end{align*} $$

$\mathcal{L^{-1}} \left\{ \dfrac{s}{s^2+a^2} \right\}=\cos (at)$, $\mathcal{L^{-1}} \left\{ \dfrac{a}{s^2+a^2} \right\}=\sin (at)$ 이므로

$$ y(t)=2\cos t + \dfrac{5}{3}\sin t -\dfrac{1}{3}\sin (2t) $$


  1. William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p250-251 ↩︎

댓글