조건부 기대값의 성질들

조건부 기대값의 성질들

정리

확률 공간 $( \Omega , \mathcal{F} , P)$ 이 주어져 있다고 하자.


설명

선형성

시그마필드는 정보다

한편 $\sigma(X)$ 는 $X$ 의 모든 정보를 알고 있으면서 가장 작은 시그마필드로 정의되었으므로 당연히 $E(X| \sigma(X)) = X$ 다. 이는 위에서 소개된 노테이션에 따라 $E(X|X) = X$ 와 같다.

증명

[1]

$h : \mathbb{R} \to \mathbb{R}$ 를 $z \in \mathbb{R}$ 에 대해 $h(z) := \left( g \circ f^{-1} ( \left\{ z \right\} ) \right)$ 과 같이 정의하자.

$\left\{ z \right\} \in \mathcal{B}(\mathbb{R})$ 이면 $f$ 는 $\mathcal{F}$-가측이므로 $f^{-1}(\left\{ z \right\}) \in \mathcal{F}$ 고, $g$ 역시 $\mathcal{F}$-가측이므로 $h$ 는 잘 정의되며, $g (\omega) = ( h \circ f ) ( \omega )$ 를 만족한다.

모든 보렐 셋 $B \in \mathcal{B}(\mathbb{R})$ 에 대해 $$ h^{-1}(B) = (f \circ g^{-1})(B) = f \left( g^{-1} (B) \right) $$ 를 생각해보면 $g^{-1} (B) \in \mathcal{F}$ 이므로 $f(g^{-1} (B) ) \in \mathcal{B}(\mathbb{R})$ 이다. 모든 $B \in \mathcal{B}(\mathbb{R})$ 에 대해 $h^{-1}(B) \in \mathcal{B}(\mathbb{R})$ 이므로, $h$ 는 보렐 함수다.

[2]

$E ( Y | X ) = E ( Y | \sigma (X) )$ 는 조건부 기대값의 정의에 따라 $\sigma (X)$-가측인 확률 변수고, $X$ 역시 $\sigma (X)$ 의 정의에 따라 당연히 $\sigma (X)$-가측 확률변수다. 그러면 [1]에 의해 $\mathcal{F} = \sigma (X)$ 라 두고 $$ f = X \\ g = E ( Y | X ) $$ 라 하면 $E(Y|X) = h(X)$ 를 만족하는 보렐 함수 $h : \mathbb{R} \to \mathbb{R}$ 가 존재한다.

전략 [3]~[7]: 적분폼으로 바꿔서 전개해서 정적분이 같음을 보인 후 다음의 정리를 적용한다. 원래 별다른 이름이 없으나, 이 포스트에서만 르벡 적분 렘마라고 명명하겠다.

르벡 적분의 성질 $$ \forall A \in \mathcal{F}, \int_{A} f dm = 0 \iff f = 0 \text{ a.e.} $$

[3]

모든 $A \in \mathcal{F}$ 에 대해 $\displaystyle \int_{A} X dP = \int_{A} X dP$ 를 만족하는 $X$ 가 유일하게 존재하므로 조건부 기대값의 정의에 따라 $X = E(X| \mathcal{F})$ 는 $\mathcal{F}$ 에 대한 $X$ 의 조건부 기댓값이다. 따라서 모든 $A \in \mathcal{F}$ 에 대해 $$ \int_{A} E(X |\mathcal{F}) dP = \int_{A} X dP $$ 이고, 르벡 적분 렘마에 의해 $X = E(X |\mathcal{F}) \text{ a.s.}$

[4]

조건부 기댓값의 정의에 따라 $\displaystyle \int_{A} E(X |\mathcal{G}) dP = \int_{A} X dP$ 다.

Case 1. $A = \emptyset$

$$ 0 = \int_{\emptyset} E(X |\mathcal{G}) dP = \int_{\emptyset} X dP = 0 $$


Case 2. $A = \Omega$

$$ \int_{\Omega} E(X |\mathcal{G}) dP = \int_{\Omega} X dP = E(X) = E(X) P(\Omega) = E(X) \int_{\Omega} 1 dP = \int_{\Omega} E(X) dP $$


따라서 어떤 경우든, 르벡 적분 렘마에 의해 $X = E(X |\mathcal{G}) \text{ a.s.}$

[5]

$c \in \mathcal{G}$ 이고 $E(c | \mathcal{G}) \in \mathcal{G}$ 이므로 조건부 기댓값의 정의에 따라 모든 $A \in \mathcal{G}$ 에 대해 $$ \int_{A} E(c |\mathcal{G}) dP = \int_{A} X dP $$ 고, 따라서 르벡 적분 렘마에 의해 $c = E(c | \mathcal{G}) \text{ a.s.}$

[6]

조건부 기댓값의 정의와 르벡 적분의 리니어러티에 의해 모든 $A \in \mathcal{G}$ 에 대해 $$ \begin{align*} \int_{A} E( cX |\mathcal{G}) dP =& \int_{A} cX dP \\ =& c \int_{A} X dP \\ =& c \int_{A} E(X|\mathcal{G}) dP \\ =& \int_{A} c E(X|\mathcal{G}) dP \end{align*} $$ 이고, 르벡 적분 렘마에 의해 $E( cX |\mathcal{G}) = c E(X|\mathcal{G}) dP \text{ a.s.}$

[7]

조건부 기댓값의 정의와 르벡 적분의 리니어러티에 의해 모든 $A \in \mathcal{G}$ 에 대해 $$ \begin{align*} \int_{A} E( X+Y |\mathcal{G}) dP =& \int_{A} (X+Y) dP \\ =& \int_{A} X dP +\int_{A} Y dP \\ =& \int_{A} E(X|\mathcal{G}) dP + \int_{A} E(Y|\mathcal{G}) dP \\ =& \int_{A} \left[ E(X|\mathcal{G}) + E(Y|\mathcal{G}) \right] dP \end{align*} $$ 이고, 르벡 적분 렘마에 의해 $$ E( X +Y |\mathcal{G}) = E(X|\mathcal{G}) + E(Y|\mathcal{G}) dP \text{ a.s.} $$

[8]

$E( X |\mathcal{G}) < 0$ 이라고 가정해보면 $$ \begin{align*} \int_{A} E( X |\mathcal{G}) dP =& \int_{A} X dP \\ \ge& \int_{A} 0 dP \\ =& 0 \end{align*} $$ 이므로 모순이다. 따라서 $E( X |\mathcal{G}) \ge 0 \text{ a.s.}$ 이어야한다.

[9]

$Z := X - Y \ge 0$ 라고 하면 [8] 에 의해 $$ E(X-Y | \mathcal{G}) \ge 0 $$ 이고, 조건부 기대값의 리니어러티에 의해 $$ E(X| \mathcal{G}) - E(Y | \mathcal{G}) \ge 0 \text{ a.s.} $$

[10]

Part 1. $X \ge 0$

$X \ge 0$ 이면 $|X| = X$ 이므로 $$ E( |X| |\mathcal{G}) = E(X|\mathcal{G}) $$

[8]에 따라 $E(X|\mathcal{G}) \ge 0$ 이므로 마찬가지로 $E(X|\mathcal{G}) = \left| E(X|\mathcal{G}) \right|$ 가 되어 $$ E( |X| |\mathcal{G}) = E(X|\mathcal{G}) = \left| E(X|\mathcal{G}) \right| $$


Part 2. $X < 0$

[6]에 의해 $$ E( |X| |\mathcal{G}) = E( -X |\mathcal{G}) = - E(X |\mathcal{G}) = \left| E(X|\mathcal{G}) \right| $$


Part 3. $X = X^{+} - X^{-}$

삼각 부등식에 따라 $$ \left| E(X|\mathcal{G}) \right| \le \left| E( X^{+} |\mathcal{G}) \right| + \left| E( X^{-} |\mathcal{G}) \right| $$ $X^{+} , X^{-} \ge 0$ 이므로 Part 1에 따라 $$ \left| E(X|\mathcal{G}) \right| \le E( \left| X^{+} \right| |\mathcal{G}) + E( \left| X^{-} \right| | \mathcal{G}) $$

[7]과 절대값 표현 $|f| = |f^{+}| + |f^{-}|$ 에 따라 $$ \begin{align*} \left| E(X|\mathcal{G}) \right| \le & E( \left| X^{+} \right| + \left| X^{-} \right| | \mathcal{G}) \\ =& E( \left| X \right| | \mathcal{G}) \text{ a.s.} \end{align*} $$

[11]

$$ \begin{align*} E \left[ E( X | \mathcal{G} ) \right] =& \int_{\Omega} E ( X | \mathcal{G} ) d P \\ =& \int_{\Omega} X d P \\ =& E(X) \end{align*} $$

댓글