수반 작용소의 성질

수반 작용소의 성질

properties of adjoint operator

정리1

$H,K$를 힐베르트 공간이라고 하자. 유계 선형 작용소 $T : K \to H$ 에 대해 다음을 만족하는 $T^{\ast} : H \to K$ 를 $T$ 의 수반 작용소라고 한다.

$$ \left\langle T \textbf{v} , \textbf{w} \right\rangle_{H} = \left\langle \textbf{v} , T^{\ast} \textbf{w} \right\rangle_{K},\quad \forall \textbf{v} \in K $$ 이때 수반 작용소는 다음의 성질을 갖는다.

(a) $T^{\ast}$ 는 선형이고 유계다.

(b) $\left( T^{\ast} \right)^{\ast} = T$

(c) $\left\| T^{\ast} \right\| = \left\| T \right\| $

증명

(a)

  • Part 1. $T^{\ast}$는 선형이다

    정의에 따라

    $$ T^{\ast}( \alpha \mathbf{w}+\beta \mathbf{u} )=\alpha T^{\ast}(\mathbf{w})+\beta T^{\ast}(\mathbf{u}) $$

    를 보이면 된다. $T^{\ast}$와 내적의 정의에 따라, $\mathbf{v}\in K$에 대해서 다음이 성립한다.

    $$ \begin{align*} \left\langle \mathbf{v}, T^{\ast}(\alpha \mathbf{w}+ \beta \mathbf{u}) \right\rangle_{K} =&\ \left\langle T\mathbf{v},\alpha \mathbf{w} + \beta \mathbf{u} \right\rangle_{H} \\ =&\ \overline{\alpha}\left\langle T\mathbf{v},\mathbf{w} \right\rangle_{H} +\overline{\beta} \left\langle T\mathbf{v}, \mathbf{u} \right\rangle_{H} \\ =&\ \overline{\alpha}\left\langle \mathbf{v}, T^{\ast}\mathbf{w} \right\rangle_{K} +\overline{\beta} \left\langle \mathbf{v}, T^{\ast} \mathbf{u} \right\rangle_{K} \\ =&\ \left\langle \mathbf{v}, \alpha T^{\ast} \mathbf{w}+\beta T^{\ast} \mathbf{u} \right\rangle_{K} \end{align*} $$

    모든 $\mathbf{v}$에 대해서 $\left\langle \mathbf{v},\mathbf{u} \right\rangle=\left\langle \mathbf{v},\mathbf{w}\right\rangle $이면 $\mathbf{u}=\mathbf{w}$이므로,

    $$ T^{\ast}( \alpha \mathbf{w}+\beta \mathbf{u} )=\alpha T^{\ast}(\mathbf{w})+\beta T^{\ast}(\mathbf{u}) $$

  • Part 2. $T^{\ast}$는 유계이다

    정의에 따라

    $$ \left\| T^{\ast}\mathbf{w} \right\| \le C \left\| \mathbf{w} \right\|,\quad \forall \mathbf{w}\in H $$

    를 만족하는 상수 $C$가 존재하는지 보이면 된다. 내적과 놈의 관계에 의해 다음이 성립한다.

    $$ \left\| T^{\ast}\mathbf{w} \right\| = \sup \limits_{\substack{\mathbf{v}\in K \\ \left\| \mathbf{v} \right\|=1 }} \left| \left\langle \mathbf{v},T^{\ast}\mathbf{w} \right\rangle_{K} \right| $$

    그러면 $T^{\ast}$의 정의와 코시-슈바르츠 부등식에 의해 다음이 성립한다.

    $$ \begin{align*} \left\| T^{\ast}\mathbf{w} \right\| =&\ \sup \limits_{\substack{\mathbf{v}\in K \\ \left\| \mathbf{v} \right\|=1 }} \left| \left\langle \mathbf{v},T^{\ast}\mathbf{w} \right\rangle_{K} \right| \\ =&\ \sup \limits_{\substack{\mathbf{v}\in K \\ \left\| \mathbf{v} \right\|=1 }} \left| \left\langle T\mathbf{v},\mathbf{w} \right\rangle_{H} \right| \\ \le& \sup \limits_{\substack{\mathbf{v}\in K \\ \left\| \mathbf{v} \right\|=1 }} \left\| T\mathbf{v} \right\| \left\| \mathbf{w} \right\| \end{align*} $$

    여기서 $T$는 유계이므로 $\left\| T\mathbf{v} \right\|\le \left\| T \right\| \left\| \mathbf{v} \right\|$가 성립한다. 따라서,

    $$ \begin{align*} \left\| T^{\ast}\mathbf{w} \right\| \le& \sup \limits_{\substack{\mathbf{v}\in K \\ \left\| \mathbf{v} \right\|=1 }} \left\| T\mathbf{v} \right\| \left\| \mathbf{w} \right\| \\ \le& \sup \limits_{\substack{\mathbf{v}\in K \\ \left\| \mathbf{v} \right\|=1 }} \left\| T \right\| \left\| \mathbf{v} \right\| \left\| \mathbf{w} \right\| \\ \le& \left\| T \right\| \left\| \mathbf{w} \right\| \end{align*} $$

    이므로 $T^{\ast}$는 유계이다.

(b)

$T^{\ast}$와 내적의 정의에 의해 간단히 보일 수 있다.

$$ \begin{align*} \left\langle T\mathbf{v},\mathbf{w} \right\rangle_{H} =&\ \left\langle \mathbf{v},T^{\ast}\mathbf{w} \right\rangle_{K} \\ =&\ \overline{\left\langle T^{\ast}\mathbf{w},\mathbf{v} \right\rangle_{K}} \\ =&\ \overline{\left\langle \mathbf{w},(T^{\ast})^{\ast}\mathbf{v} \right\rangle_{K}} \\ =&\ \left\langle (T^{\ast})^{\ast}\mathbf{v},\mathbf{w} \right\rangle_{K} \end{align*} $$

이는 모든 $\mathbf{w}$에 대해서 성립하므로 Part 1. 에서와 같은 논리로

$$ T\mathbf{v}=(T^{\ast})^{\ast}\mathbf{v}\implies T=(T^{\ast})^{\ast} $$

(c)

(a) 의 증명으로부터 $\left\| T^{\ast} \right\| \le \left\| T \right\|$를 얻었다. 같은 방법으로 반대 방향의 부등식을 얻을 수 있다.

$$ \begin{align*} \left\| T\mathbf{v} \right\| =&\ \sup \limits_{\substack{\mathbf{w}\in H \\ \left\| \mathbf{w} \right\|=1 }} \left| \left\langle T\mathbf{v},\mathbf{w} \right\rangle_{H} \right| \\ =&\ \sup \limits_{\substack{\mathbf{w}\in H \\ \left\| \mathbf{w} \right\|=1 }} \left| \left\langle \mathbf{v},T^{\ast}\mathbf{w} \right\rangle_{K} \right| \\ \le& \sup \limits_{\substack{\mathbf{w}\in H \\ \left\| \mathbf{w} \right\|=1 }} \left\| \mathbf{v} \right\| \left\| T^{\ast}\mathbf{w} \right\| \\ \le& \sup \limits_{\substack{\mathbf{w}\in H \\ \left\| \mathbf{w} \right\|=1 }} \left\| \mathbf{v} \right\| \left\| T^{\ast} \right\| \left\| \mathbf{w} \right\| \\ \le& \left\| T^{\ast} \right\| \left\| \mathbf{v} \right\| \end{align*} $$

따라서 $\left\| T^{} \right\|\le \left\| T^{\ast} \right\|$가 성립하므로,

$$ \left\| T \right\| = \left\| T^{\ast} \right\| $$


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p72 ↩︎

댓글