삼각함수의 라플라스 변환

삼각함수의 라플라스 변환

공식1

사인과 코사인의 라플라스 변환은 다음과 같다.

$$ \mathcal{L} \left\{ \sin (at) \right\} = \dfrac{a}{s^2+a^2},\quad s>0 $$

$$ \mathcal{L} \left\{ \cos (at) \right\} = \dfrac{s}{s^2+a^2},\quad s>0 $$

유도

$\sin (at)$

$$ \begin{align*} \mathcal{L} \left\{ \sin (at) \right\}& =\displaystyle \int_0^\infty e^{-st}\sin(at)dt \\ &= \lim \limits_{A \to \infty} \left[-\dfrac{1}{a}e^{-st}\cos (at) \right]_0^A+ \lim \limits_{A \to \infty} \int _0^\infty -\dfrac{s}{a}e^{-st} \cos (at)dt \\ &= \dfrac{1}{a} - \lim \limits_{A \to \infty} \dfrac{s}{a} \left[ \dfrac{1}{a} \left[ e^{-st}\sin (at) \right]_0^A + \dfrac{s}{a}\int _0^A e^{-st} \sin (at) dt \right] \\ &=\dfrac{1}{a} - \dfrac{s^2}{a^2} \int_0^\infty e^{-st} \sin (at) dt \end{align*} $$

여기서 $\mathcal{L} \left\{ \sin (at) \right\} = \displaystyle \int_0^\infty e^{-st} \sin (at) dt$가 성립하므로,

$$ \begin{align*} \implies& &\dfrac{a^2+s^2}{a^2} \int _0^\infty e^{-st} \sin (at) dt &= \dfrac{1}{a} \\ \implies& &\int_0^\infty e^{-st} \sin (at)dt &=\dfrac{a}{s^2+a^2} \end{align*} $$

단, $\lim \limits_{A \to \infty} e^{-sA}\sin (aA)=0$을 만족해야하므로 $s>0$

$\cos (at)$

$\sin$의 결과를 이용하면 $\cos$의 라플라스 변환은 훨씬 쉽고 짧게 구할 수 있다.

$$ \begin{align*} \mathcal{ L } \left\{ \cos (at) \right\} &=\int _0^\infty e^{-st} \cos (at) dt \\ &= \lim \limits_{A \to \infty} \dfrac{1}{a} \left[ e^{-st} \sin (at) \right]_0^A + \dfrac{s}{a} \int_0^\infty e^{-st} \sin (at) dt \\ &= \dfrac{s}{a} \dfrac{a}{s^2+a^2} \\ &=\dfrac{s}{s^2+a^2} \end{align*} $$

단, $s>0$

같이보기


  1. William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p246 ↩︎

댓글