델 연산자가 포함된 식의 부분적분

델 연산자가 포함된 식의 부분적분

integral by part with del operator

공식

델 연산자가 포함된 벡터 적분에 대해서 다음의 식이 성립한다.

(a)

$$ \int_{\mathcal{V}}\mathbf{A} \cdot (\nabla f)d\tau = \oint_{\mathcal{S}}f\mathbf{A} \cdot d \mathbf{a}-\int_{\mathcal{V}}f(\nabla \cdot \mathbf{A})d\tau $$

(b)

$$ \int_{\mathcal{S}} f \left( \nabla \times \mathbf{A} \right)\mathbf{A} \cdot d \mathbf{a} = \int_{\mathcal{S}} \left[ \mathbf{A} \times \left( \nabla f \right) \right] \cdot d\mathbf{a} + \oint_{\mathcal{P}} f\mathbf{A} \cdot d\mathbf{l} $$

(c)

$$ \int_{\mathcal{V}} \mathbf{B} \cdot \left( \nabla \times \mathbf{A} \right) d\tau = \int_{\mathcal{V}} \mathbf{A} \cdot \left( \nabla \times \mathbf{B} \right) d\tau + \oint_{\mathcal{S}} \left( \mathbf{A} \times \mathbf{B} \right) \cdot d \mathbf{a} $$

설명

부분적분은 어떤 함수$(f\ or\ \mathbf{A}$)와 어떤 함수의 도함수$(\nabla f\ or\ \nabla \cdot \mathbf{A})$의 곱의 적분을 쉽게 해주는 방법이다.

부분적분 $\dfrac{d}{dx}\left( fg \right) = f\dfrac{dg}{dx}+g\dfrac{df}{dx}$ 양 변을 정적분하면

$$ \int_a^b \dfrac{d}{dx} \left(fg\right) = (fg)\Big|_a^b=\int_a^b f\left(\dfrac{dg}{dx}\right)dx+\int_a^bg\left(\dfrac{df}{dx}\right)dx \\ \implies \int_a^b f\left(\dfrac{dg}{dx}\right)dx = (fg)\Big|_a^b-\int_a^bg\left(\dfrac{df}{dx}\right)dx $$

증명

(a)

곱셈 규칙 3

$$ \nabla \cdot (f\mathbf{A}) = \mathbf{A} \cdot (\nabla f) + f(\nabla \cdot \mathbf{A}) $$

양 변을 부피적분하면

$$ \int_{\mathcal{V}} \nabla \cdot (f\mathbf{A})d\tau = \int_{\mathcal{V}}\mathbf{A} \cdot (\nabla f)d\tau + \int_{\mathcal{V}}f(\nabla \cdot \mathbf{A})d\tau $$

좌변에 발산정리 를 적용하면

$$ \oint_{\mathcal{S}}f\mathbf{A} \cdot d \mathbf{a} = \int_{\mathcal{V}}\mathbf{A} \cdot (\nabla f)d\tau + \int_{\mathcal{V}}f(\nabla \cdot \mathbf{A})d\tau $$

정리하면

$$ \int_{\mathcal{V}}f(\nabla \cdot \mathbf{A})d\tau = \oint_{\mathcal{S}}f\mathbf{A} \cdot d \mathbf{a}-\int_{\mathcal{V}}\mathbf{A} \cdot (\nabla f)d\tau $$

혹은

$$ \int_{\mathcal{V}}\mathbf{A} \cdot (\nabla f)d\tau = \oint_{\mathcal{S}}f\mathbf{A} \cdot d \mathbf{a}-\int_{\mathcal{V}}f(\nabla \cdot \mathbf{A})d\tau $$

(b)

(c)

댓글