크리스토펠 심볼은 내재적이다

크리스토펠 심볼은 내재적이다

정리1

크리스토펠 심볼 $\Gamma_{ij}^{k}$는 다음의 식을 만족한다. 다시말해 내재적이다.

$$ \Gamma_{ij}^{k} = \dfrac{1}{2} \sum \limits_{l=1}^{2} g^{lk} \left( \dfrac{\partial g_{lj}}{\partial u_{i}} - \dfrac{\partial g_{ij}}{\partial u_{l}} + \dfrac{\partial g_{il}}{\partial u_{j}} \right) $$

설명

가우스가 증명했다.

크리스토펠 심볼은 리만 메트릭에만 의존하고, 노멀 벡터와는 무관하다. 따라서 크리스토펠 심볼을 통해, 곡면을 벗어나지 않고 곡면의 구조를 파악할 수 있다는 말이다.

증명

우선 각 인덱스에 대한 리만 메트릭 계수의 편미분을 구해보면 다음과 같다.

$$ \dfrac{\partial g_{il}}{\partial u_{j}} = \dfrac{\partial}{\partial u_{j}} \left\langle \mathbf{x}_{i} , \mathbf{x}_{l} \right\rangle = \langle \mathbf{x}_{ij} , \mathbf{x}_{l} \rangle + \langle \mathbf{x}_{i}, \mathbf{x}_{lj} \rangle $$

$$ \dfrac{\partial g_{ij}}{\partial u_{l}} = \dfrac{\partial}{\partial u_{l}} \left\langle \mathbf{x}_{i} , \mathbf{x}_{j} \right\rangle = \langle \mathbf{x}_{il} , \mathbf{x}_{j} \rangle + \langle \mathbf{x}_{i}, \mathbf{x}_{jl} \rangle $$

$$ \dfrac{\partial g_{lj}}{\partial u_{i}} = \dfrac{\partial}{\partial u_{i}} \left\langle \mathbf{x}_{l} , \mathbf{x}_{j} \right\rangle = \langle \mathbf{x}_{li} , \mathbf{x}_{j} \rangle + \langle \mathbf{x}_{l}, \mathbf{x}_{ji} \rangle $$

$\mathbf{\mathbf{x}}_{ij} = \mathbf{\mathbf{x}}_{ji}$이므로,

$$ \begin{align*} \dfrac{\partial g_{il}}{\partial u_{j}} - \dfrac{\partial g_{ij}}{\partial u_{l}} + \dfrac{\partial g_{lj}}{\partial u_{i}} =&\ \langle \mathbf{x}_{ij} , \mathbf{x}_{l} \rangle + \langle \mathbf{x}_{i}, \mathbf{x}_{lj} \rangle - \langle \mathbf{x}_{il} , \mathbf{x}_{j} \rangle - \langle \mathbf{x}_{i}, \mathbf{x}_{jl} \rangle + \langle \mathbf{x}_{li} , \mathbf{x}_{j} \rangle + \langle \mathbf{x}_{l}, \mathbf{x}_{ji} \rangle \\ =&\ \langle \mathbf{x}_{ij} , \mathbf{x}_{l} \rangle + \langle \mathbf{x}_{l}, \mathbf{x}_{ji} \rangle \\ =&\ 2 \langle \mathbf{x}_{ij} , \mathbf{x}_{l} \rangle \end{align*} $$

따라서 크리스토펠 심볼은

$$ \Gamma_{ij}^{k} = \sum \limits_{l=1}^{2} \left\langle \mathbf{x}_{ij}, \mathbf{x}_{l} \right\rangle g^{lk} = \dfrac{1}{2} \sum \limits_{l=1}^{2} \left( \dfrac{\partial g_{lj}}{\partial u_{i}} - \dfrac{\partial g_{ij}}{\partial u_{l}} + \dfrac{\partial g_{il}}{\partial u_{j}} \right) g^{lk} $$

예제

$\mathbf{x}(u_{1}, u_{2}) = \left( u_{1}, u_{2}, f(u_{1}, u_{2}) \right)$와 같은 몬지 패치가 주어졌다고 하자. 그러면

$$ \mathbf{x}_{1} = \partial_{u_{1}}\mathbf{x} = (1,0,f_{1}) \quad \text{and} \quad \mathbf{x}_{2} = (0,1,f_{2}) $$

이때 $f_{i} = \partial_{u_{i}}f$이다. $\Gamma_{11}^{1}$은 아래의 두 방법으로 구할 수 있다.

extrinsically computing

$$ \mathbf{x}_{1} \times \mathbf{x}_{2} = (-f_{1}, -f_{2}, 1) $$

단위 노멀

$$ \mathbf{n} = \dfrac{(-f_{1}, -f_{2}, 1)}{\sqrt{(f_{1})^{2} + (f_{2})^{2} + 1}} $$

가우스 공식

$$ \mathbf{x}_{ij} = L_{ij} \mathbf{n} + \sum \limits_{k=1}^{2} \Gamma_{ij}^{k} \mathbf{x}_{k} $$

$\mathbf{x}$의 2계 도함수는 가우스 공식에 의해서 다음과 같다.

$$ \mathbf{x}_{11} = (0, 0, f_{11}) = L_{11}\mathbf{n} + \Gamma_{11}^{1}\mathbf{x}_{1} + \Gamma_{11}^{2}\mathbf{x}_{2} $$

따라서 제2 기본형식의 계수는 $L_{ij} = \langle \mathbf{x}_{ij}, \mathbf{n} \rangle$이므로

$$ L_{11} = \left\langle (0,0,f_{11}), \dfrac{(-f_{1}, -f_{2}, 1)}{\sqrt{(f_{1})^{2} + (f_{2})^{2} + 1}}\right\rangle = \dfrac{f_{11}}{\sqrt{(f_{1})^{2} + (f_{2})^{2} + 1}} $$

여기서 $\mathbf{x}_{11}$을 성분별로 자세히 풀어보면 다음과 같다.

$$ \mathbf{x}_{11} = (0, 0, f_{11}) = \dfrac{L_{11}}{\sqrt{(f_{1})^{2} + (f_{2})^{2} + 1}}(-f_{1}, -f_{2}, 1) + \Gamma_{11}^{1}(1,0,f_{1}) + \Gamma_{11}^{2}(0,1,f_{2}) $$

첫번째 성분만 보면 다음의 식을 얻는다.

$$ \begin{align*} && 0 =&\ \dfrac{L_{11}(-f_{1})}{\sqrt{(f_{1})^{2} + (f_{2})^{2} + 1}} + \Gamma_{11}^{1} \\[1em] \implies&& \Gamma_{11}^{1} =&\ \dfrac{L_{11}(f_{1})}{\sqrt{(f_{1})^{2} + (f_{2})^{2} + 1}} \\[1em] \implies&& \Gamma_{11}^{1} =&\ \dfrac{f_{1} f_{11}}{(f_{1})^{2} + (f_{2})^{2} + 1} \end{align*} $$

intrinsically computing

위의 정리에 의해 $\Gamma_{11}^{1}$은 다음과 같이 계산할 수 있다.

$$ \begin{align*} \Gamma_{11}^{1} =&\ \dfrac{1}{2} \sum \limits_{l=1}^{2} g^{l1} \left( \dfrac{\partial g_{l1}}{\partial u_{1}} - \dfrac{\partial g_{11}}{\partial u_{l}} + \dfrac{\partial g_{1l}}{\partial u_{1}} \right) \\ =&\ \dfrac{1}{2} \left[ g^{11} \left( \dfrac{\partial g_{11}}{\partial u_{1}} - \dfrac{\partial g_{11}}{\partial u_{1}} + \dfrac{\partial g_{11}}{\partial u_{1}} \right) + g^{21} \left( \dfrac{\partial g_{21}}{\partial u_{1}} - \dfrac{\partial g_{11}}{\partial u_{2}} + \dfrac{\partial g_{12}}{\partial u_{1}} \right) \right] \\ =&\ \dfrac{1}{2} \left[ g^{11} \dfrac{\partial g_{11}}{\partial u_{1}} + 2g^{21}\dfrac{\partial g_{21}}{\partial u_{1}} - g^{21}\dfrac{\partial g_{11}}{\partial u_{2}} \right] \end{align*} $$

제1 기본형식의 계수는 $g_{ij} = \left\langle \mathbf{x}_{1}, \mathbf{x}_{2} \right\rangle$이므로

$$ \left[ g_{ij} \right] = \begin{bmatrix} 1+(f_{1})^{2} & f_{1}f_{2} \\[1em] f_{1}f_{2} & 1 + (f_{2})^{2} \end{bmatrix} $$

역행렬은

$$ \left[ g_{ij} \right]^{-1} = \left[ g^{lk} \right] = \dfrac{1}{(f_{1})^{2} + (f_{2})^{2} + 1}\begin{bmatrix} 1+(f_{2})^{2} & -f_{1}f_{2} \\[1em] -f_{1}f_{2} & 1 + (f_{1})^{2} \end{bmatrix} $$

따라서 필요한 것들을 구해보면 다음과 같다.

$$ \begin{align*} \dfrac{\partial g_{11}}{\partial u_{1}} =&\ \dfrac{\partial }{\partial u_{1}}\left( 1+ (f_{1})^{2} \right) = 2f_{1}f_{11} \\ \dfrac{\partial g_{21}}{\partial u_{1}} =&\ \dfrac{\partial }{\partial u_{1}}\left( f_{1}f_{2} \right) = f_{11}f_{2} + f_{1}f_{21} \\ \dfrac{\partial g_{11}}{\partial u_{2}} =&\ \dfrac{\partial }{\partial u_{2}}\left( 1+ (f_{1})^{2} \right) = 2f_{1}f_{12} \end{align*} $$

그리고

$$ \begin{align*} g^{11} =&\ \dfrac{1+(f_{2})^{2}}{(f_{1})^{2} + (f_{2})^{2} + 1} \\ g^{21} =&\ \dfrac{-f_{1}f_{2}}{(f_{1})^{2} + (f_{2})^{2} + 1} \end{align*} $$

이제 대입해보면 다음과 같다.

$$ \begin{align*} \Gamma_{11}^{1} =&\ \dfrac{1}{2} \left[ g^{11} \dfrac{\partial g_{11}}{\partial u_{1}} + 2g^{21}\dfrac{\partial g_{21}}{\partial u_{1}} - g^{21}\dfrac{\partial g_{11}}{\partial u_{2}} \right] \\ =&\ \dfrac{1}{2} \left[ \dfrac{1+(f_{2})^{2}}{(f_{1})^{2} + (f_{2})^{2} + 1} 2f_{1}f_{11} + 2\dfrac{-f_{1}f_{2}}{(f_{1})^{2} + (f_{2})^{2} + 1} \left( f_{11}f_{2} + f_{1}f_{21} \right)- \dfrac{-f_{1}f_{2}}{(f_{1})^{2} + (f_{2})^{2} + 1}2f_{1}f_{12} \right] \\ =&\ \dfrac{1}{(f_{1})^{2} + (f_{2})^{2} + 1}\left[ \left( 1+(f_{2})^{2} \right)f_{1}f_{11} + \left( -f_{1}f_{2} \right) \left( f_{11}f_{2} + f_{1}f_{21} \right)- (-f_{1}f_{2})f_{1}f_{12} \right] \\ =&\ \dfrac{1}{(f_{1})^{2} + (f_{2})^{2} + 1}\left[ f_{1}f_{11} + f_{1}(f_{2})^{2}f_{11} - f_{1}(f_{2})^{2}f_{11} -(f_{1})^{2}f_{2}f_{21} + (f_{1})^{2}f_{2}f_{12} \right] \\ =&\ \dfrac{1}{(f_{1})^{2} + (f_{2})^{2} + 1}\left[ f_{1}f_{11} \right] \\ =&\ \dfrac{f_{1}f_{11}}{(f_{1})^{2} + (f_{2})^{2} + 1} \end{align*} $$

내재적 성질만 가지고 크리스토펠 심볼을 계산하는 것은 그렇지 않은 경우보다 더 복잡한 것을 알 수 있다.


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p105-106 ↩︎

댓글