다변수 벡터함수의 연쇄법칙

다변수 벡터함수의 연쇄법칙

정리

두 함수 $\mathbf{g} : D \subset \mathbb{R}^{m} \to \mathbb{R}^{k}$, $\mathbf{f} : \mathbf{g}(\mathbb{R}^{k}) \subset \mathbb{R}^{k} \to \mathbb{R}^{n}$가 미분 가능하다고 하자. 그러면 두 함수의 합성 $\mathbf{F} = \mathbf{f} \circ \mathbf{g} : \mathbb{R}^{m} \to \mathbb{R}^{n}$도 미분가능하고, $\mathbf{F}$의 (전)도함수는 다음을 만족한다.

$$ \mathbf{F}^{\prime}(\mathbf{x}) = \mathbf{f}^{\prime}\left( \mathbf{g}(\mathbf{x}) \right) \mathbf{g}^{\prime}(\mathbf{x}) $$

설명

이를 연쇄법칙이라 한다. 증명은 여기를 참고하자.

$\mathbf{x} = (x_{1}, \dots, x_{m})$, $\mathbf{g}(\mathbf{x}) = (g_{1}, \dots, g_{k})$, $\mathbf{f}(g_{1}, \dots, g_{k}) = (f_{1}, \dots, f_{n})$라고 하면, 공식의 구체적인 꼴은 전 도함수의 정의로부터 다음과 같은 $n \times m$ 행렬이다.

$$ \begin{align*} \mathbf{F}^{\prime} (\mathbf{x}) =&\ \begin{bmatrix} \dfrac{\partial f_{1}(\mathbf{g}(\mathbf{x}))}{\partial g_{1}} & \dfrac{\partial f_{1}}{\partial g_{2}} & \cdots & \dfrac{\partial f_{1}}{\partial g_{k}} \\[1em] \dfrac{\partial f_{2}}{\partial g_{1}} & \dfrac{\partial f_{2}}{\partial g_{2}} & \cdots & \dfrac{\partial f_{2}}{\partial g_{k}} \\[1em] \vdots & \vdots & \ddots & \vdots \\[1em] \dfrac{\partial f_{n}}{\partial g_{1}} & \dfrac{\partial f_{n}}{\partial g_{2}} & \cdots & \dfrac{\partial f_{n}}{\partial g_{k}} \end{bmatrix} \begin{bmatrix} \dfrac{\partial g_{1}(\mathbf{x})}{\partial x_{1}} & \dfrac{\partial g_{1}}{\partial x_{2}} & \cdots & \dfrac{\partial g_{1}}{\partial x_{m}} \\[1em] \dfrac{\partial g_{2}}{\partial x_{1}} & \dfrac{\partial g_{2}}{\partial x_{2}} & \cdots & \dfrac{\partial g_{2}}{\partial x_{m}} \\[1em] \vdots & \vdots & \ddots & \vdots \\[1em] \dfrac{\partial g_{k}}{\partial x_{1}} & \dfrac{\partial g_{k}}{\partial x_{2}} & \cdots & \dfrac{\partial g_{k}}{\partial x_{m}} \end{bmatrix} \\[1em] =&\ \begin{bmatrix} \dfrac{\partial f_{1}}{\partial g_{1}} \dfrac{\partial g_{1}}{\partial x_{1}}+\dfrac{\partial f_{1}}{\partial g_{2}}\dfrac{\partial g_{2}}{\partial x_{1}} + \cdots + \dfrac{\partial f_{1}}{\partial g_{k}} \dfrac{\partial g_{k}}{\partial x_{1}} & \dots & \dfrac{\partial f_{1}}{\partial g_{1}} \dfrac{\partial g_{1}}{\partial x_{1}}+\dfrac{\partial f_{1}}{\partial g_{2}}\dfrac{\partial g_{2}}{\partial x_{m}} + \cdots + \dfrac{\partial f_{1}}{\partial g_{k}} \dfrac{\partial g_{k}}{\partial x_{m}} \\[1em] \vdots & \ddots & \vdots \\[1em] \dfrac{\partial f_{n}}{\partial g_{1}} \dfrac{\partial g_{1}}{\partial x_{1}}+\dfrac{\partial f_{n}}{\partial g_{2}}\dfrac{\partial g_{2}}{\partial x_{1}} + \cdots + \dfrac{\partial f_{n}}{\partial g_{k}} \dfrac{\partial g_{k}}{\partial x_{1}} & \cdots & \dfrac{\partial f_{n}}{\partial g_{1}} \dfrac{\partial g_{1}}{\partial x_{1}}+\dfrac{\partial f_{n}}{\partial g_{2}}\dfrac{\partial g_{2}}{\partial x_{m}} + \cdots + \dfrac{\partial f_{n}}{\partial g_{m}} \dfrac{\partial g_{k}}{\partial x_{m}} \end{bmatrix} \\[1em] =&\ \begin{bmatrix} \displaystyle \sum\limits_{\ell =1}^{k} \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \displaystyle \sum\limits_{\ell=1}^{k} \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \\[1em] \vdots & \ddots & \vdots \\[1em] \displaystyle \sum\limits_{\ell=1}^{k} \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \displaystyle \sum\limits_{\ell=1}^{k} \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \end{bmatrix} \end{align*} $$

아인슈타인 표기법으로 간단히 나타내면, $1 \le i \le n$, $1 \le j \le m$에 대해서

$$ \mathbf{F}^{\prime} = \left[ F_{ij}^{\prime} \right] = \begin{bmatrix} \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \dfrac{\partial f_{1}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \\[1em] \vdots & \ddots & \vdots \\[1em] \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{1}} & \dots & \dfrac{\partial f_{n}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{m}} \end{bmatrix} $$

$$ F_{ij}^{\prime} = \dfrac{\partial f_{i}}{\partial g_{\ell}} \dfrac{\partial g_{\ell}}{\partial x_{j}} $$

이는 가장 일반화된 꼴이므로, $k, m, n$에 따라서 여러가지 구체적은 공식을 얻을 수 있다.

공식








댓글