logo

그린의 공식 📂편미분방정식

그린의 공식

정리

$u, v \in C^2( \bar{U})$이라고 하자. 그러면 다음의 식들이 성립한다.

  • (i) $\displaystyle \int_{U} \Delta u dx=\int_{\partial U} \dfrac{\partial u}{\partial \nu}dS$

  • (ii) $\displaystyle \int_{U} Dv \cdot Du dx = -\int_{U} u \Delta v dx+\int_{\partial U}\dfrac{\partial v}{\partial \nu}udS$

  • (iii) $\displaystyle \int_{U} (u\Delta v - v\Delta u )dx = \int_{\partial U} \left( \dfrac{\partial v}{\partial \nu}u - \dfrac{\partial u}{\partial \nu} v\right)dS$

이를 묶어 그린의 공식Green’s formula이라 한다.

증명

부분적분공식

$u, v \in C^1(\bar{U})$라고 하자. 그러면 아래의 식이 성립한다.

$$ \int_{U} u_{x_{i}}vdx = -\int_{U} uv_{x_{i}}dx + \int_{\partial U} uv\nu^{i} dS\quad (i=1,\dots , n) $$

(i)

부분적분 공식에서 $u$ 대신에 $u_{x_{i}}$를, $v$대신에 $1$을 대입하면 아래의 식을 얻는다.

$$ \int_{U} u_{x_{i} x_{i}}dx = \int_{\partial U} u_{x_{i}}\nu^{i} dS \quad (i=1,\cdots , n) $$

모든 $i=1,\cdots, n$에 대해서 더하면 다음과 같다.

$$ \int_{U} (u_{x_{1} x_{1}}+\cdots +u_{x_{n} x_{n}} )dx = \int_{\partial U}( u_{x_{1}}\nu^{1} +\cdots u_{x_{n}}\nu^n)dS $$

라플라시안의 정의와 $\dfrac{\partial u}{\partial \nu}:=\boldsymbol{\nu}\cdot Du$에 의해 다음이 성립한다.

$$ \int_{U} \Delta u dx=\int_{\partial U} \dfrac{\partial u}{\partial \nu}dS $$

(ii)

부분적분 공식에서 $v$ 대신에 $v_{x_{i}}$를 대입하면 아래의 식을 얻는다.

$$ \int_{U} u_{x_{i}}v_{x_{i}}dx = -\int_{U} uv_{x_{i}x_{i}}dx + \int_{\partial U} uv_{x_{i}}\nu^{i} dS \quad (i=1,\cdots , n) $$

모든 $i=1,\cdots ,n$에 대해서 더하면 다음과 같다.

$$ \int_{U} (u_{x_{1}}v_{x_{1}}+\cdots +u_{x_{n}}v_{x_{n}} )dx = -\int_{U} u(v_{x_{1}x_{1}}+\cdots v_{x_{n} x_{n}})dx + \int_{\partial U} ( v_{x_{1}}\nu^1 +\cdots v_{x_{n}}\nu^n )udS $$

정리하면 다음과 같다.

$$ \int_{U} Du\cdot Dvdx = -\int_{U} u\Delta vdx + \int_{\partial U} \dfrac{\partial v}{\partial \nu}u dS $$

(iii)

(ii)에서 $u$와 $v$의 자리를 바꾸면 아래의 식을 얻는다.

$$ \int_{U} Du \cdot Dv dx = -\int_{U} v \Delta u dx+\int_{\partial U}\dfrac{\partial u}{\partial \nu}vdS $$

위 식에서 (ii)를 빼면 다음과 같다.

$$ 0= -\int_{U} ( v \Delta u -u\Delta v) dx+\int_{\partial U} \left( \dfrac{\partial u}{\partial \nu}v -\dfrac{\partial v}{\partial \nu}u \right)dS $$

정리하면 다음을 얻는다.

$$ -\int_{U} ( v \Delta u -u\Delta v) dx=\int_{\partial U} \left( \dfrac{\partial v}{\partial \nu}u -\dfrac{\partial u}{\partial \nu}v \right)dS $$

같이보기