logo

추상대수학에서의 순환군 📂추상대수

추상대수학에서의 순환군

정의 1

$G$ 의 어떤 원소 $a$ 과 임의의 $x \in G$ 에 대해 $x = a^{n}$ 을 만족하는 정수 $n \in \mathbb{Z}$ 이 존재하면 $G$ 를 순환군cyclic group이라 하고 $a$ 를 생성원generator이라 한다.

설명

쉽게 말해 군의 모든 원소를 생성원의 거듭제곱으로 나타낼 수 있으면 순환군이다. 계속해서 거듭제곱하는 형태로 모든 원소를 나타내게 되므로 ‘순환’이라는 표현이 상당히 적절함을 알 수 있다.

정의만으로 단박에 알 수 있는 성질은 아니지만 모든 순환군은 아벨군이며, 생성원이 꼭 유일하지는 않다. 정리 [1]은 그 예다.

또한 정의에 따르면 순환군이 꼭 유한군일 필요도 없다. 주의해야 할 것은 $n$ 이 존재하되 자연수가 아니라 정수라는 점이며, 이는 생성원의 역원을 더해도 상관 없다는 뜻이다. 정리 [2]는 그 예다.

정리

  • [1]: $\mathbb{Z}_{4} = \left\{ 0,1,2,3 \right\}$ 의 생성원은 유일하지 않다.
  • [2]: $\mathbb{Z}$ 은 순환군이다.

증명

[1]

$1$ 만으로도 모든 원소를 표현할 수 있지만 $3 \equiv -1 \pmod{4}$ 이므로 $3$ 으로도 모든 원소를 표현할 수 있다.

따라서 $\left< 1 \right> = \left< 3 \right> = \mathbb{Z}_{4}$ 이며, 생성원이 유일해야하는 것은 아님을 알 수 있다.

[2]

$\left< \mathbb{Z} , + \right>$ 의 모든 원소는 $1 \cdot n = (-1) \cdot (-n) = n$ 으로 나타낼 수 있으므로 $\mathbb{Z} = \left< 1 \right> = \left< -1 \right>$


  1. Fraleigh. (2003). A first course in abstract algebra(7th Edition): p59. ↩︎