logo

리 대수 📂표현론

리 대수

정의1

유한차원 실(복소) 벡터공간 $\mathfrak{g}$가 다음과 같은 이항연산 $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$을 가지면 리 대수Lie algebra라 한다.

  1. $[\cdot, \cdot]$가 이중선형bilinear이다. $$ [ax + by, z] = a[x, z] + b[y, z] $$
  2. $[\cdot, \cdot]$가 반대칭skew-symmetric이다. $$ [x, y] = -[y, x] $$
  3. $[\cdot, \cdot]$가 야코비 항등식을 만족한다. $$ [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 $$

설명

리 대수는 $\mathfrak{g}$와 같이 프락투어체로 표기한다. $[\cdot, \cdot]$은 브라켓bracket이라 읽는다. 일반적으로 리 대수에서 브라켓 연산은 결합법칙을 만족할 필요가 없다. 결합법칙은 성립하지 않지만, 그것의 느슨한 버전이라 할 수 있는 야코비 항등식이 성립한다.

예시

결합 대수

$A$를 결합 대수, 그리고 $\mathfrak{g}$를 $A$의 부분공간이라 하자. 교환자 $[X, Y] = XY - YX$가 $\mathfrak{g}$에서 닫혀있으면, $\mathfrak{g}$는 리 대수를 이룬다.

3차원 공간과 외적

$\mathfrak{g} = \mathbb{R}^{3}$이고 $[\cdot, \cdot]$를 3차원 공간의 외적이라 하자.

$$ [\mathbf{x}, \mathbf{y}] = \mathbf{x} \times \mathbf{y} $$

그러면 $\mathfrak{g}$는 리 대수를 이룬다.


  1. Brian C. Hall. Lie Groups, Lie Algebras, and Representations (2nd), p49-50 ↩︎