초기조건이 0인 파동방정식의 해
정리
다음과 같은 파동방정식이 주어졌다고 하자. 이때 $\Delta_{\mathbf{x}}$는 변수 $\mathbf{x}$에 대한 라플라시안이다.
$$ \begin{align} \partial_{t}^{2} p(\mathbf{x}, t) &= \Delta_{\mathbf{x}} p(\mathbf{x}, t) &\text{on } \mathbb{R} \times [0, \infty) \\ p(\mathbf{x}, 0) &= f(\mathbf{x}) &\text{on } \mathbb{R} \\ \partial_{t} p(\mathbf{x}, 0) &= 0 &\text{on } \mathbb{R} \end{align} $$
위 편미분방정식의 해는 다음과 같다.
$$ \begin{equation} p(\mathbf{x}, t) = \dfrac{1}{(2\pi)^{n}} \int\limits_{\mathbb{R}^{n}} \hat{f} (\boldsymbol{\xi}) \cos (t \left| \boldsymbol{\xi} \right|) e^{\mathrm{i} \mathbf{x} \cdot \boldsymbol{\xi}} \mathrm{d} \boldsymbol{\xi} \end{equation} $$
이때 $\hat{f}$은 $f$의 푸리에변환이다. 이번엔 초기조건이 아래와 같이 주어진 파동방정식을 생각해보자.
$$ \begin{align*} \partial_{t}^{2} p(\mathbf{x}, t) &= \Delta_{\mathbf{x}} p(\mathbf{x}, t) &\text{on } \mathbb{R} \times [0, \infty) \\ p(\mathbf{x}, 0) &= 0 &\text{on } \mathbb{R} \\ \partial_{t} p(\mathbf{x}, 0) &= g(\mathbf{x}) &\text{on } \mathbb{R} \end{align*} $$
위 편미분방정식의 해는 다음과 같다.
$$ p(\mathbf{x}, t) = \dfrac{1}{(2\pi)^{n}} \int\limits_{\mathbb{R}^{n}} \hat{g} (\boldsymbol{\xi}) \dfrac{\sin (t \left| \boldsymbol{\xi} \right|)}{\left| \boldsymbol{\xi} \right|} e^{\mathrm{i} \mathbf{x} \cdot \boldsymbol{\xi}} \mathrm{d} \boldsymbol{\xi} $$
설명
$$ \hat{f}(\boldsymbol{\xi}) = \int\limits_{\mathbb{R}^{n}} f(\mathbf{x}) e^{\mathrm{i} \boldsymbol{\xi} \cdot \mathbf{x}} \mathrm{d} \mathbf{x}, \qquad f(\mathbf{x}) = \dfrac{1}{(2\pi)^{n}}\int\limits_{\mathbb{R}^{n}} f(\mathbf{x}) e^{\mathrm{i} \mathbf{x} \cdot \boldsymbol{\xi}} \mathrm{d} \boldsymbol{\xi} $$
후자의 증명법은 전자와 대동소이하므로 생략한다.
증명
$(4)$가 $(1)$, $(2)$, $(3)$을 만족시키는지 확인해보기만하면 된다. 우선 시간에 대한 2계 도함수를 계산해보면,
$$ \partial_{t}^{2} p(\mathbf{x}, t) = -\left| \boldsymbol{\xi} \right|^{2} \dfrac{1}{(2\pi)^{n}} \int\limits_{\mathbb{R}^{n}} \hat{f} (\boldsymbol{\xi}) \cos (t \left| \boldsymbol{\xi} \right|) e^{\mathrm{i} \mathbf{x} \cdot \boldsymbol{\xi}} \mathrm{d} \boldsymbol{\xi} $$
라플라시안을 계산해보면 다음과 같다.
$$ \begin{align*} \Delta_{\mathbf{x}} p(\mathbf{x}, t) &= \dfrac{1}{(2\pi)^{n}} \int\limits_{\mathbb{R}^{n}} \hat{f} (\boldsymbol{\xi}) \cos (t \left| \boldsymbol{\xi} \right|) (\Delta_{\mathbf{x}} e^{\mathrm{i} \mathbf{x} \cdot \boldsymbol{\xi}}) \mathrm{d} \boldsymbol{\xi} \\ &= (- \left| \boldsymbol{\xi} \right|^{2}) \dfrac{1}{(2\pi)^{n}} \int\limits_{\mathbb{R}^{n}} \hat{f} (\boldsymbol{\xi}) \cos (t \left| \boldsymbol{\xi} \right|) e^{\mathrm{i} \mathbf{x} \cdot \boldsymbol{\xi}} \mathrm{d} \boldsymbol{\xi} \\ \end{align*} $$
따라서 $(1)$이 성립한다. $p(\mathbf{x}, 0)$를 계산해보면 다음과 같으므로 $(2)$가 성립한다.
$$ \begin{align*} p(\mathbf{x}, 0) &= \dfrac{1}{(2\pi)^{n}} \int\limits_{\mathbb{R}^{n}} \hat{f} (\boldsymbol{\xi}) \cos ( 0 \left| \boldsymbol{\xi} \right|) e^{\mathrm{i} \mathbf{x} \cdot \boldsymbol{\xi}} \mathrm{d} \boldsymbol{\xi} \\ &= \dfrac{1}{(2\pi)^{n}} \int\limits_{\mathbb{R}^{n}} \hat{f} (\boldsymbol{\xi}) e^{\mathrm{i} \mathbf{x} \cdot \boldsymbol{\xi}} \mathrm{d} \boldsymbol{\xi} \\ &= f(\mathbf{x}) \end{align*} $$
$(3)$이 성립하는 것도 쉽게 확인할 수 있다.
$$ \begin{align*} \partial_{t}p(\mathbf{x}, 0) &= - \left| \boldsymbol{\xi} \right| \int\limits_{\mathbb{R}^{n}} \hat{f} (\boldsymbol{\xi}) \sin ( 0 \left| \boldsymbol{\xi} \right|) e^{\mathrm{i} \mathbf{x} \cdot \boldsymbol{\xi}} \mathrm{d} \boldsymbol{\xi} \\ &= 0 \end{align*} $$
■