logo

라돈 변환과 곱 적분, 컨볼루션 📂단층촬영

라돈 변환과 곱 적분, 컨볼루션

정리1

R\mathcal{R}라돈 변환이라고 하자.

Rf(s,θ)=xθ=sf(x)dx \mathcal{R} f (s, \boldsymbol{\theta}) = \int\limits_{\mathbf{x} \cdot \boldsymbol{\theta} = s} f(\mathbf{x}) d \mathbf{x}

Rθf(s)=Rf(s,θ)\mathcal{R}_{\boldsymbol{\theta}}f(s) = \mathcal{R} f (s, \boldsymbol{\theta})라고 하자. 다음의 공식들이 성립한다.

라돈 변환과 곱 적분

Rθf(s)g(s)ds=Rnf(x)g(xθ)dx \int\limits_{-\infty}^{\infty} \mathcal{R}_{\boldsymbol{\theta}}f(s)g(s) ds = \int \limits_{\mathbb{R}^{n}} f(\mathbf{x}) g(\mathbf{x} \cdot \boldsymbol{\theta}) d \mathbf{x}

따름정리

Rθf(ts)g(s)ds=Rnf(x)g(xθ+t)dx \int\limits_{-\infty}^{\infty} \mathcal{R}_{\boldsymbol{\theta}}f(t - s)g(s) ds = \int \limits_{\mathbb{R}^{n}} f(\mathbf{x}) g(-\mathbf{x} \cdot \boldsymbol{\theta} + t) d \mathbf{x}

라돈 변환과 컨볼루션

Rθ(fg)=RθfRθg \mathcal{R}_{\boldsymbol{\theta}} (f \ast g) = \mathcal{R}_{\boldsymbol{\theta}}f \ast \mathcal{R}_{\boldsymbol{\theta}}g

증명

라돈 변환과 곱 적분

sθ+uxs \boldsymbol{\theta} + \mathbf{u} \equiv \mathbf{x}라고 치환하면,

Rθf(s)g(s)ds= θf(sθ+u)g(s)duds= Rnf(x)g(xθ)dx \begin{align*} \int\limits_{-\infty}^{\infty} \mathcal{R}_{\boldsymbol{\theta}}f(s)g(s) ds =&\ \int\limits_{-\infty}^{\infty} \int\limits_{\boldsymbol{\theta}^{\perp}} f(s \boldsymbol{\theta} + \mathbf{u})g(s) d \mathbf{u} ds \\ =&\ \int \limits_{\mathbb{R}^{n}} f(\mathbf{x}) g(\mathbf{x} \cdot \boldsymbol{\theta}) d \mathbf{x} \end{align*}

따름정리

Rθf(ts)g(s)ds= Rf(ts,θ)g(s)ds= θf((ts)θ+u)g(s)duds \begin{align*} \int\limits_{-\infty}^{\infty} \mathcal{R}_{\boldsymbol{\theta}}f(t-s)g(s) ds =&\ \int\limits_{-\infty}^{\infty} \mathcal{R}f(t-s, \boldsymbol{\theta})g(s) ds \\ =&\ \int\limits_{-\infty}^{\infty} \int\limits_{\boldsymbol{\theta}^{\perp}} f((t-s) \boldsymbol{\theta} + \mathbf{u})g(s) d \mathbf{u} ds \\ \end{align*}

(ts)θ+ux(t-s)\boldsymbol{\theta} + \mathbf{u} \equiv \mathbf{x}라 치환하면, s=xθ+ts = -\mathbf{x} \cdot \boldsymbol{\theta} + t이고,

θf((ts)θ+u)g(s)duds=Rnf(x)g(xθ+t)dx \int\limits_{-\infty}^{\infty} \int\limits_{\boldsymbol{\theta}^{\perp}} f((t-s) \boldsymbol{\theta} + \mathbf{u})g(s) d \mathbf{u} ds = \int \limits_{\mathbb{R}^{n}} f(\mathbf{x}) g(-\mathbf{x} \cdot \boldsymbol{\theta} + t) d \mathbf{x}

라돈 변환과 컨볼루션

라돈 변환의 평행 불변성 RTaf(s,θ)=TaθRf(s,θ)\mathcal{R}T_{\mathbf{a}}f (s, \boldsymbol{\theta}) = T_{\mathbf{a} \cdot \boldsymbol{\theta}}\mathcal{R}f(s,\boldsymbol{\theta})에 의해,

Rθ(fg)(s)= R(fg)(s,θ)= θfg(sθ+u)du= θRnf(sθ+uy)g(y)dydu= θRnf(x)g(sθ+ux)dxdu= Rnf(x)θg(sθ+ux)dudx= Rnf(x)θTxg(sθ+u)dudx= Rnf(x)RTxg(s,θ)dx= Rnf(x)TxθRg(s,θ)dx= Rnf(x)Rg(sxθ,θ)dx= Rnf(x)Rθg(sxθ)dx \begin{align*} \mathcal{R}_{\boldsymbol{\theta}} (f \ast g) (s) =&\ \mathcal{R} (f \ast g) (s, \boldsymbol{\theta}) \\ =&\ \int \limits_{\boldsymbol{\theta}^{\perp}} f \ast g (s \boldsymbol{\theta} + \mathbf{u} ) d \mathbf{u} \\ =&\ \int \limits_{\boldsymbol{\theta}^{\perp}} \int \limits_{\mathbb{R}^{n}} f (s \boldsymbol{\theta} + \mathbf{u} - \mathbf{y} ) g(\mathbf{y}) d \mathbf{y} d \mathbf{u} \\ =&\ \int \limits_{\boldsymbol{\theta}^{\perp}} \int \limits_{\mathbb{R}^{n}} f (\mathbf{x}) g(s \boldsymbol{\theta} + \mathbf{u} - \mathbf{x}) d \mathbf{x} d \mathbf{u} \\ =&\ \int \limits_{\mathbb{R}^{n}} f (\mathbf{x})\int \limits_{\boldsymbol{\theta}^{\perp}} g(s \boldsymbol{\theta} + \mathbf{u} - \mathbf{x}) d \mathbf{u} d \mathbf{x} \\ =&\ \int \limits_{\mathbb{R}^{n}} f (\mathbf{x}) \int \limits_{\boldsymbol{\theta}^{\perp}} T_{\mathbf{x}} g(s \boldsymbol{\theta} + \mathbf{u}) d \mathbf{u} d \mathbf{x} \\ =&\ \int \limits_{\mathbb{R}^{n}} f (\mathbf{x}) \mathcal{R} T_{\mathbf{x}} g(s, \boldsymbol{\theta}) d \mathbf{x} \\ =&\ \int \limits_{\mathbb{R}^{n}} f (\mathbf{x}) T_{\mathbf{x} \cdot \boldsymbol{\theta}} \mathcal{R} g(s, \boldsymbol{\theta}) d \mathbf{x} \\ =&\ \int \limits_{\mathbb{R}^{n}} f (\mathbf{x}) \mathcal{R} g(s - \mathbf{x} \cdot \boldsymbol{\theta}, \boldsymbol{\theta}) d \mathbf{x} \\ =&\ \int \limits_{\mathbb{R}^{n}} f (\mathbf{x}) \mathcal{R}_{\boldsymbol{\theta}} g(s - \mathbf{x} \cdot \boldsymbol{\theta}) d \mathbf{x} \\ \end{align*}

위의 따름정리에 의해,

Rnf(x)Rθg(sxθ)dx= Rθf(st)Rθg(t)dt= (RθfRθg)(s) \begin{align*} \int \limits_{\mathbb{R}^{n}} f (\mathbf{x}) \mathcal{R}_{\boldsymbol{\theta}} g(s - \mathbf{x} \cdot \boldsymbol{\theta}) d \mathbf{x} =&\ \int\limits_{-\infty}^{\infty} \mathcal{R}_{\boldsymbol{\theta}} f(s-t) \mathcal{R}_{\boldsymbol{\theta}} g(t) dt \\ =&\ (\mathcal{R}_{\boldsymbol{\theta}}f \ast \mathcal{R}_{\boldsymbol{\theta}}g )(s) \end{align*}


  1. Boris Rubin, Introduction to Radon Transforms With Elements of Fractional Calculus and Harmonic Analysis (2015), p129, 134 ↩︎