logo

랜덤 벡터의 기대값 📂수리통계학

랜덤 벡터의 기대값

정의 1

$$ E \left( X \right) := \begin{bmatrix} E \left( X_{1} \right) \\ \vdots \\ E \left( X_{n} \right) \end{bmatrix} $$ 랜덤벡터 $X = \left( X_{1} , \cdots , X_{n} \right)$ 의 기대값expectation은 위와 같이 각 성분의 기대값의 벡터로 정의된다. 마찬가지로 크기가 $m \times n$ 인 확률변수행렬 $\mathbf{X} = \left[ X_{ij} \right]$ 도 각 성분의 기대값을 성분으로 가지는 행렬 $E \left( \mathbf{X} \right) := \left[ E \left( X_{ij} \right) \right]$ 과 같이 정의된다.

성질

  • [1] 선형성: $\mathbf{X}_{1}$ 와 $\mathbf{X}_{2}$ 가 $m \times n$ 사이즈의 랜덤행렬이고 컨스턴트 행렬 $A_{1}, A_{2} \in \mathbb{R}^{k \times m}$ 와 $B \in \mathbb{R}^{n \times l}$ 이 주어져 있다고 하면, 다음이 성립한다. $$ \begin{align*} E \left( A_{1} \mathbf{X}_{1} + A_{2} \mathbf{X}_{2} \right) =& A_{1} E \left( \mathbf{X}_{1} \right) + A_{2} E \left( \mathbf{X}_{2} \right) \\ E \left( A_{1} \mathbf{X}_{1} B \right) =& A_{1} E \left( X_{1} \right) B \end{align*} $$
  • [2] 트레이스: $E(\tr(\mathbf{X})) = \tr(E(\mathbf{X}))$

증명

[1]

$E \left( A \mathbf{X} \right) = A E \left( \mathbf{X} \right)$ 만 보이고 나머지는 생략한다.

$A = \begin{bmatrix} a_{ik}\end{bmatrix}$를 $m \times p$ 행렬, $\mathbf{X} = \begin{bmatrix} X_{kj}\end{bmatrix}$를 $p \times n$ 행렬이라고 하자. 그러면 행렬곱과 행렬의 기댓값 정의에 의해,

$$ \begin{align*} E(A \mathbf{X}) &= E \left( \begin{bmatrix} \sum\limits_{k=1}^{p} a_{ik}X_{kj} \end{bmatrix} \right) \\ &= \begin{bmatrix} E \left( \sum\limits_{k=1}^{p} a_{ik}X_{kj} \right) \end{bmatrix} \\ &= \begin{bmatrix} \sum\limits_{k=1}^{p} a_{ik} E \left( X_{kj} \right) \end{bmatrix} & \text{by linearity of $E$} \\ &= A E(\mathbf{X}) \end{align*} $$

[2]

$\mathbf{X} = \begin{bmatrix} X_{ij} \end{bmatrix}$를 $n \times n$ 행렬이라고 하자.

$$ \begin{align*} E(\tr(A)) &= E \left( \sum\limits_{i=1}^{n} X_{ii} \right) \\ &= \sum\limits_{i=1}^{n} E(X_{ii}) & \text{by linearity of $E$} \\ &= \tr \begin{bmatrix} E(X_{11}) & \cdots & E(X_{1n}) \\ \vdots & \ddots & \vdots \\ E(X_{n1}) & \cdots & E(X_{nn}) \end{bmatrix} & \text{by definition of trace} \\ &= \tr\left( E(\mathbf{X}) \right) \end{align*} $$


  1. Hogg et al. (2013). Introduction to Mathematical Statistcs(7th Edition): p125. ↩︎