이변량 폰 미제스 분포
정의 1
평균 방향mean Direction $\mu, \nu \in \mathbb{R}$ 과 집중concentration $\kappa_{1}, \kappa_{2} > 0$ 과 어떤 행렬 $A \in \mathbb{R}^{2 \times 2}$ 대해 다음에 비례하는 확률 밀도 함수를 가지는 연속확률분포 $\text{vM}^{2} \left( \mu , \nu , \kappa_{1} , \kappa_{2} \right)$ 를 이변량 폰 미제스 분포bivariate von Mises distribution라 한다. $$ \exp \left[ \kappa_{1} \cos \left( \theta - \mu \right) + \kappa_{2} \cos \left( \phi - \nu \right) + \begin{bmatrix} \cos \left( \theta - \mu \right) & \sin \left( \theta - \mu \right) \end{bmatrix} A \begin{bmatrix} \cos \left( \phi - \nu \right) \\ \sin \left( \phi - \nu \right) \end{bmatrix} \right] $$ 이를 $A = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$ 일 때로 한정지어 간소화하면 $$ \exp \left[ \begin{align*} & \kappa_{1} \cos \left( \theta - \mu \right) + \kappa_{2} \cos \left( \phi - \nu \right) \\ &+ \alpha \cos \left( \theta - \mu \right) \cos \left( \phi - \nu \right) \\ &+ \beta \sin \left( \theta - \mu \right) \sin \left( \phi - \nu \right) \end{align*} \right] $$ 이고, 실용적인 목적에서 더욱 모수를 줄인 다음의 모델들이 유명하다.
사인 모델
$\alpha = 0$ 고 $\beta = \lambda$ 라 둘 때, 다음의 확률밀도함수를 가지는 이변량 폰 미제스 분포를 짧게 사인 모델sine model이라 부른다. $$ f_{s} \left( \theta , \phi \right) := c \left( \kappa_{1} , \kappa_{2} \right) \exp \left[ \begin{align*} & \kappa_{1} \cos \left( \theta - \mu \right) + \kappa_{2} \cos \left( \phi - \nu \right) \\ &+ \lambda \sin \left( \theta - \mu \right) \sin \left( \phi - \nu \right) \end{align*} \right] \qquad , \left( \theta , \phi \right) \in \left[ 0, 2 \pi \right]^{2} $$ 여기서 $c \left( \kappa_{1} , \kappa_{2} \right)$ 는 다음과 같이 주어진 정규화 상수다. $$ c \left( \kappa_{1} , \kappa_{2} \right) := 4 \pi^{2} \sum_{m=1}^{\infty} \binom{2m}{m} \left( {{ \lambda^{2} } \over { 4 \kappa_{1} \kappa_{2} }} \right)^{m} I_{m} \left( \kappa_{1} \right) I_{m} \left( \kappa_{2} \right) $$
코사인 모델
$\alpha = \beta = - \kappa_{3}$ 라 두고 $\min \left\{ \kappa_{1} , \kappa_{2} \right\} \ge \kappa_{3} \ge 0$ 를 만족할 때, 다음의 확률밀도함수를 가지는 이변량 폰 미제스 분포를 짧게 코사인 모델cosine model이라 부른다. $$ f_{c} \left( \theta , \phi \right) := c \left( \kappa_{1} , \kappa_{2} , \kappa_{3} \right) \exp \left[ \begin{align*} & \kappa_{1} \cos \left( \theta - \mu \right) + \kappa_{2} \cos \left( \phi - \nu \right) \\ &- \kappa_{3} \cos \left( \theta - \mu - \phi + \nu \right) \end{align*} \right] \qquad , \left( \theta , \phi \right) \in \left[ 0, 2 \pi \right]^{2} $$ 여기서 $c \left( \kappa_{1} , \kappa_{2} , \kappa_{3} \right)$ 는 다음과 같이 주어진 정규화 상수다. $$ c \left( \kappa_{1} , \kappa_{2} , \kappa_{3} \right) := 4 \pi^{2} \left[ I_{0} \left( \kappa_{1} \right) I_{0} \left( \kappa_{2} \right) I_{0} \left( \kappa_{3} \right) + 2 \sum_{p=1}^{\infty} I_{p} \left( \kappa_{1} \right) I_{p} \left( \kappa_{2} \right) I_{p} \left( \kappa_{3} \right) \right] $$
- $I_{\nu}$ 는 $\nu$차 변형 제1종 베셀 함수로써, 이러한 복잡한 함수가 쓰이는 이유는 변형 제1종 베셀 함수가 방향 통계학에 등장하는 이유 포스트를 참고하라.
설명 2
폰 미제스 분포가 단위원 $S^{1}$ 에서의 정규분포라면 이변량 폰 미제스 분포는 위 그림에서 보는 바와 같이 토러스 $S^{1} \times S^{1}$ 에서의 정규분포라 볼 수 있다.
아니 세상에 도너츠를 연구해서 뭘 어쩌겠다고 도대체 이 따위 쓸모없는 걸 보는가 싶겠지만, 실제로는 단백질의 분자구조에서 그들이 어떤 각도로 연결되어있는지 등 생물정보학bioinformatics과 같은 분야의 응용에서 유사한 모티브를 찾아볼 수 있다.
Mardia. (2007). Bivariate von Mises densities for angular data with applications to protein bioinformatics. https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.575.3846 ↩︎
Boomsma. (2008). A generative, probabilistic model of local protein structure. https://doi.org/10.1073/pnas.0801715105 ↩︎