logo

원주율의 정의 📂보조정리

원주율의 정의

정의

기하학적 정의

  1. 평면에서 주어진 한 점과 거리 r>0r > 0 만큼 떨어진 점들의 집합circle이라 정의한다.
  2. 원의 둘레 ll 과 지름 2r2r 의 비를 원주율 π\pi 라 정의한다. π:=l2r \pi := {{ l } \over { 2r }}

해석학적 정의 1

E(z):=k=0zkk! E (z) := \sum_{k=0}^{\infty} {{ z^{k} } \over { k! }} 복소함수 E:CCE : \mathbb{C} \to \mathbb{C} 를 위와 같이 지수함수급수전개로써 정의하고, 그를 통해 코사인 함수와 유사한 다음의 함수 CC 를 정의하자. C(x):=E(ix)+E(ix)2 C(x) := {{ E (ix) + E(-ix) } \over { 2 }} C(x)C(x) 의 근, 즉 C(x)=0C(x) = 0 을 만족하는 해 중 가장 작은 양수를 x0x_{0} 이라 할 때, 그 두배를 원주율 π\pi 라 정의한다. π:=2x0 \pi := 2 x_{0}

설명

이 포스트에서는 기하학적인(쉬운) 정의와 해석학적인(어려운) 정의를 소개했는데, 학부 3학년 이상 수준의 수학도라면 해석학적인 정의를 보고 은은한 미소를 지을 수 있을 것이다.

인류의 역사에서 원주율은 대단히 중요한 상수로써, 아무리 늦어도 바퀴가 발명되던 시점에서는 그 구체적인 값이 실용적으로 쓰일 수 있게 되었다. 특히 효율적이고 정밀한 근사치로써는 227=3.142857π {{ 22 } \over { 7 }} = 3.142857 \cdots \approx \pi 와 같은 수도 알려져 있었다. 이 값은 이른바 유토리 세대ゆとり世代로 알려진 20세기 말 일본의 교육 수준을 월등히 뛰어넘을 정도로 정확하다. (여유 있는 교육을 한답시고 원주율을 33으로 가르쳤던 시기였다) 2

유토리.jpg

같이보기


  1. Walter Rudin, Principles of Mathmatical Analysis (3rd Edition, 1976): p178~183. ↩︎

  2. https://www.joongang.co.kr/article/2572535 ↩︎