logo

지수분포의 충분통계량과 최대우도추정량 📂확률분포론

지수분포의 충분통계량과 최대우도추정량

정리

지수분포를 따르는 랜덤샘플 $\mathbf{X} := \left( X_{1} , \cdots , X_{n} \right) \sim \exp \left( \lambda \right)$ 이 주어져 있다고 하자.

$\lambda$ 에 대한 충분통계량 $T$ 와 최대우도추정량 $\hat{\lambda}$ 는 다음과 같다. $$ \begin{align*} T =& \sum_{k=1}^{n} X_{k} \\ \hat{\lambda} =& {{ n } \over { \sum_{k=1}^{n} X_{k} }} \end{align*} $$

증명

충분통계량

$$ \begin{align*} f \left( \mathbf{x} ; \lambda \right) =& \prod_{k=1}^{n} f \left( x_{k} ; \lambda \right) \\ =& \prod_{k=1}^{n} \lambda e^{-\lambda x_{k}} \\ =& \lambda^{n} e^{-\lambda \sum_{k} x_{k}} \\ =& \lambda^{n} e^{-\lambda \sum_{k} x_{k}} \cdot 1 \end{align*} $$

네이만 인수분해 정리: 랜덤 샘플 $X_{1} , \cdots , X_{n}$ 이 모수 $\theta \in \Theta$ 에 대해 같은 확률질량/밀도함수 $f \left( x ; \theta \right)$ 를 가진다고 하자. 통계량 $Y = u_{1} \left( X_{1} , \cdots , X_{n} \right)$ 이 $\theta$ 의 충분통계량인 것은 다음을 만족하는 음이 아닌 두 함수 $k_{1} , k_{2} \ge 0$ 이 존재하는 것이다. $$ f \left( x_{1} ; \theta \right) \cdots f \left( x_{n} ; \theta \right) = k_{1} \left[ u_{1} \left( x_{1} , \cdots , x_{n} \right) ; \theta \right] k_{2} \left( x_{1} , \cdots , x_{n} \right) $$ 단, $k_{2}$ 는 $\theta$ 에 종속되지 않아야한다.

네이만 인수분해 정리에 따라 $T := \sum_{k} X_{k}$ 는 $\lambda$ 에 대한 충분통계량이다.

최대우도추정량

$$ \begin{align*} \log L \left( \lambda ; \mathbf{x} \right) =& \log f \left( \mathbf{x} ; \lambda \right) \\ =& \log \lambda^{n} e^{-\lambda \sum_{k} x_{k}} \\ =& n \log \lambda - \lambda \sum_{k=1}^{n} x_{k} \end{align*} $$

랜덤샘플의 로그우도함수는 위와 같고, 우도함수가 최대값이 되려면 $\lambda$ 에 대한 편미분이 $0$ 이 되는 것이므로 $$ \begin{align*} & 0 = n {{ 1 } \over { \lambda }} - \sum_{k=1}^{n} x_{k} \\ \implies & \lambda = {{ n } \over { \sum_{k=1}^{n} x_{k} }} \end{align*} $$

따라서 $\lambda$ 의 최대우도추정량 $\hat{\lambda}$ 는 다음과 같다. $$ \hat{\lambda} = {{ n } \over { \sum_{k=1}^{n} X_{k} }} $$