logo

이토-테일러 전개 유도 📂확률미분방정식

이토-테일러 전개 유도

정리 1

dX(t)=f(Xt)dt+g(Xt)dWt,t[0,T] d X(t) = f \left( X_{t} \right) dt + g \left( X_{t} \right) d W_{t} \qquad , t \in [0, T] 이토 프로세스가 위와 같은 자율 확률미분방정식의 솔루션으로써 주어져 있다고 하자. f,g:RRf,g : \mathbb{R} \to \mathbb{R}리니어 성장 조건을 만족하면, 즉 어떤 상수 KK 에 대해 {f(Xt)K(1+Xt2)g(Xt)K(1+Xt2)\begin{cases} \left| f \left( X_{t} \right) \right| \le K \left( 1 + \left| X_{t} \right|^{2} \right) \\ \left| g \left( X_{t} \right) \right| \le K \left( 1 + \left| X_{t} \right|^{2} \right) \end{cases} 이고 충분히 여러번 미분가능하면 다음이 성립한다. Xt=X0+f(X0)0tds+g(X0)0tdWs+R X_{t} = X_{0} + f \left( X_{0} \right) \int_{0}^{t} ds + g \left( X_{0} \right) \int_{0}^{t} d W_{s} + R 여기서 나머지remainder RR 은 다음과 같다. LkL^{k} 는 유도 과정에서 등장하는 오퍼레이터다. R=0tL0f(Xz)dzds+0tL1f(Xz)dWzds+0tL0g(Xz)dzdWs+0tL1g(Xz)dWzdWs R = \int_{0}^{t} L^{0} f \left( X_{z} \right) dz ds + \int_{0}^{t} L^{1} f \left( X_{z} \right) dW_{z} ds + \int_{0}^{t} L^{0} g \left( X_{z} \right) dz dW_{s} + \int_{0}^{t} L^{1} g \left( X_{z} \right) dW_{z} dW_{s}

설명

이토-테일러 전개확률적 테일러 공식stochastic Taylor formula이라고도 불리는 정리다. 수식적으로는 적분 안에 있던 fXtf \circ X_{t}gXtg \circ X_{t}t=0t=0 에서 평가되어evaluated 상수항으로써 밖으로 나오고, 그에 따라 발생하는 오차를 RR 로 묶어놓은 것으로 볼 수 있다.

유도

X(t)=X0+0tf(s)ds+0tg(s)dWs X (t) = X_{0} + \int_{0}^{t} f(s) ds + \int_{0}^{t} g(s) d W_{s} 위와 같이 이토 프로세스의 적분꼴을 생각해보자.

이토 공식: 이토 프로세스 {Xt}t0\left\{ X_{t} \right\}_{t \ge 0} 가 주어져 있다고 하자. dXt=udt+vdWt d X_{t} = u dt + v d W_{t} 함수 V(t,Xt)=VC2([0,)×R)V \left( t, X_{t} \right) = V \in C^{2} \left( [0,\infty) \times \mathbb{R} \right) 에 대해 Yt:=V(t,Xt)Y_{t} := V \left( t, X_{t} \right) 라 두면 {Yt}\left\{ Y_{t} \right\} 역시 이토 프로세스고, 다음이 성립한다. dYt=Vtdt+VxdXt+12Vxx(dXt)2=(Vt+Vxu+12Vxxv2)dt+VxvdWt \begin{align*} d Y_{t} =& V_{t} dt + V_{x} d X_{t} + {{ 1 } \over { 2 }} V_{xx} \left( d X_{t} \right)^{2} \\ =& \left( V_{t} + V_{x} u + {{ 1 } \over { 2 }} V_{xx} v^{2} \right) dt + V_{x} v d W_{t} \end{align*}

XtX_{t} 에 이계도함수가 연속인 함수 hC2(R)h \in C^{2} \left( \mathbb{R} \right) 를 취하면 이토 공식에 따라 h(Xt)=h(X0)+0t[f(Xs)Xh(Xs)+12[g(Xs)]22X2h(Xs)]ds+0tg(Xs)Xh(Xs)dWs=h(X0)+0tL1h(Xs)ds+0tL1h(Xs)dWS \begin{align*} h \left( X_{t} \right) =& h \left( X_{0} \right) + \int_{0}^{t} \left[ f \left( X_{s} \right) {{ \partial } \over { \partial X }} h \left( X_{s} \right) + {{ 1 } \over { 2 }} \left[ g \left( X_{s} \right) \right]^{2} {{ \partial^{2} } \over { \partial X^{2} }} h \left( X_{s} \right) \right] ds \\ & + \int_{0}^{t} g \left( X_{s} \right) {{ \partial } \over { \partial X }} h \left( X_{s} \right) d W_{s} \\ =& h \left( X_{0} \right) + \int_{0}^{t} L^{1} h \left( X_{s} \right) ds + \int_{0}^{t} L^{1} h \left( X_{s} \right) d W_{S} \end{align*} 여기서 L0L^{0}L1L^{1} 은 다음과 같이 정의되는 오퍼레이터다. L0:=fX+12g22X2L1:=gX \begin{align*} L^{0} &:= f {{ \partial } \over { \partial X }} + {{ 1 } \over { 2 }} g^{2} {{ \partial^{2} } \over { \partial X ^{2} }} \\ L^{1} &:= g {{ \partial } \over { \partial X }} \end{align*} 이를 형식적으로 h=fh = fh=gh = g 에 적용시켜서 원래의 주어져있던 적분꼴 이토 프로세스의 f(Xt)f \left( X_{t} \right)g(Xt)g \left( X_{t} \right) 에 대입하면 다음을 얻는다. X(t)=X0+0tf(s)ds+0tg(s)dWs=X0+0t(f(X0)+0sL1f(Xz)dz+0sL1f(Xz)dWz)ds+0t(g(X0)+0sL1g(Xz)ds+0sL1g(Xz)dWz)dWs=X0+0tf(X0)ds+0tg(X0)dWs+R=X0+f(X0)0tds+g(X0)0tdWs+R \begin{align*} X (t) =& X_{0} + \int_{0}^{t} f(s) ds + \int_{0}^{t} g(s) d W_{s} \\ =& X_{0} + \int_{0}^{t} \left( {\color{Red} f \left( X_{0} \right)} + \int_{0}^{s} L^{1} f \left( X_{z} \right) dz + \int_{0}^{s} L^{1} f \left( X_{z} \right) d W_{z} \right) ds \\ & + \int_{0}^{t} \left( {\color{Red} g \left( X_{0} \right)} + \int_{0}^{s} L^{1} g \left( X_{z} \right) ds + \int_{0}^{s} L^{1} g \left( X_{z} \right) d W_{z} \right) d W_{s} \\ =& X_{0} + \int_{0}^{t} f \left( X_{0} \right) ds + \int_{0}^{t} g \left( X_{0} \right) d W_{s} + R \\ =& X_{0} + f \left( X_{0} \right) \int_{0}^{t} ds + g \left( X_{0} \right) \int_{0}^{t} d W_{s} + R \end{align*}


  1. Panik. (2017). Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: p215. ↩︎