logo

푸앙카레 맵 📂동역학

푸앙카레 맵

정의 1

유클리드 공간 Rn\mathbb{R}^{n}오픈 셋 URnU \subset \mathbb{R}^{n} 에서 연속함수 f:URnf : U \to \mathbb{R}^{n} 에 대해 다음과 같은 벡터필드미분 방정식으로 주어져 있다고 하자. x˙=f(x) \dot{x} = f(x) 플로우ϕt()\phi_t \left( \cdot \right) 와 같이 나타내고 벡터필드를 가로지르는 (n1)\left( n-1 \right)차원 곡면 Σ\Sigma 를 생각해보자. 오픈 셋 VΣV \subset \Sigma 에 대해 다음과 같은 PP푸앙카레 맵Poincaré map이라 한다. P:VΣxϕτ(x)(x) \begin{align*} P : V &\to \Sigma \\ x &\mapsto \phi_{\tau (x)} (x) \end{align*} 여기서 τ(x)\tau (x)xx 에서 출발해 다시 Σ\Sigma 로 돌아오는 시간을 의미한다.


  • Σ\Sigma 의 모든 점에서 f(x)n(x)0f(x) \cdot n (x) \ne 0 이면 Σ\Sigma 가 벡터필드를 가로지른다transverse고 한다.

설명

book

PP 로 인해 Σ\Sigma 상에서 그 플로우 ϕ\phi 는 그 중간과정을 생략하고 Σ\Sigma 를 떠돌게 된다.

denma

덴마에서 원거리 공격을 막아내는 평면구속2과 비슷한 이미지다. 푸앙카레 맵은 벡터필드로 표현된 시스템을 Σ\Sigma 로 한 차원 내린 맵이다. 다른 것도 아니고 차원이 하나 사라졌으니 소실되는 정보도 많겠지만, 전체적인 양상에 관심을 둔다면 어떤 문제에서든 사용해봄직하다.

같이보기


  1. Wiggins. (2003). Introduction to Applied Nonlinear Dynamical Systems and Chaos Second Edition(2nd Edition): p123. ↩︎

  2. https://comic.naver.com/webtoon/detail.nhn?titleId=119874&no=119 ↩︎