logo

에르미트 다항식의 로드리게스 공식 📂함수

에르미트 다항식의 로드리게스 공식

공식

에르미트 다항식의 명시적explicit 공식은 다음과 같다.

물리학자의 에르미트 다항함수

Hn=(1)nex2dndxnex2(1) H_{n} = (-1)^{n} e^{x^2} {{d^{n}} \over {dx^{n}}} e^{-x^2} \tag{1}

확률론자의 에르미트 다항함수

Hen=(1)nex22dndxnex22 H_{e_{n}} = (-1)^{n} e^{{x^2} \over {2}} {{d^{n}} \over {dx^{n}}} e^{- {{x^2} \over {2}}}

유도

아래의 미분방정식

ynx2yn=(2n+1)yn(2) y_{n}^{\prime \prime} - x^{2}y_{n} = -(2n+1)y_{n} \tag{2}

의 해를 에르미트 함수라 하며, 다음과 같다.

yn=ex22Dnex2 y_{n} = e^{\frac{x^{2}}{2}}D^{n}e^{-x^{2}}

여기서 D=ddxD = \dfrac{d}{dx}미분 연산자이다. 에르미트 함수와 에르미트 다항식은 다음의 식을 만족한다.

yn=(1n)ex22Hn(x) y_{n} = (-1^{n})e^{-\frac{x^{2}}{2}}H_{n}(x)

yny_{n}의 도함수를 계산해보면 다음과 같다.

yn=(1n)(xex22)Hn(x)+(1n)ex22Hn(x)yn=(1n)[(ex22)Hn(x)+x2ex22Hn(x)+(xex22)Hn(x)]+(1n)[(xex22)Hn(x)+(1n)ex22Hn(x)] \begin{align*} y_{n}^{\prime} &= (-1^{n})(-xe^{-\frac{x^{2}}{2}})H_{n}(x) + (-1^{n})e^{-\frac{x^{2}}{2}}H_{n}^{\prime}(x) \\ y_{n}^{\prime \prime} &= (-1^{n})\left[ (-e^{-\frac{x^{2}}{2}})H_{n}(x) + x^{2}e^{-\frac{x^{2}}{2}}H_{n}(x) + (-xe^{-\frac{x^{2}}{2}})H_{n}^{\prime}(x)\right] \\ &\quad +(-1^{n})\left[ (-xe^{-\frac{x^{2}}{2}})H_{n}^{\prime}(x) + (-1^{n})e^{-\frac{x^{2}}{2}}H_{n}^{\prime \prime}(x) \right] \end{align*}

이 결과를 (2)(2)에 대입하면 다음과 같다.

[ex22Hn(x)2xex22Hn(x)+(x21)ex22Hn(x)]x2ex22Hn(x)+(2n+1)ex22Hn(x)=0 \left[ e^{-\frac{x^{2}}{2}}H_{n}^{\prime \prime}(x) - 2xe^{-\frac{x^{2}}{2}}H_{n}^{\prime}(x) + (x^{2}-1)e^{-\frac{x^{2}}{2}}H_{n}(x) \right] - x^{2}e^{-\frac{x^{2}}{2}}H_{n}(x) + (2n + 1)e^{-\frac{x^{2}}{2}}H_{n}(x) = 0

정리하면 아래의 식을 얻는다.

Hn(x)2xHn(x)+2nHn(x)=0 H_{n}^{\prime \prime}(x) - 2xH_{n}^{\prime}(x) + 2nH_{n}(x) = 0