멜린변환의 컨볼루션
정의
$$ (f \times g) (y) = \int _{0}^{\infty} f(x)g \left(\frac{y}{x} \right)\frac{dx}{x} $$
설명
곱셈적 합성곱multiplicative convolution1이라 부르기도 한다.
증명
$$ \mathcal{M}(f \times g)=(\mathcal{M}f)(\mathcal{M}g) $$
위 등식이 성립함을 보이면 된다.
$$ \begin{align*} \mathcal{M}(f\times g)(s) &= \int _{0} ^{\infty} x^{s-1} (f\times g)(x)dx \\ &= \int _{0} ^{\infty} x^{s-1} (f\times g)(x)dx \\ &= \int _{0} ^{\infty} x^{s-1} \left( \int _{0}^{\infty}f(y)g \left( \frac{x}{y} \right)\frac{dy}{y} \right)dx \\ &= \int _{0} ^{\infty} \int _{0}^{\infty}x^{s-1}f(y)g \left( \frac{x}{y} \right)\frac{dy}{y} dx \\ &= \int _{0} ^{\infty} \int _{0}^{\infty}y^{s-1}z^{s-1}f(y)g (z)dydz \\ &= \int _{0} ^{\infty} y^{s-1}f(y)dy \int_{0}^{\infty} z^{s-1}g (z)dz \\ &= \mathcal{M}f(s) \mathcal{M}g(s) \end{align*} $$
■
Gerald B. Folland, Fourier Analysis and Its Applications (1992), p254 ↩︎