logo

에르미트 다항식의 재귀 관계 📂함수

에르미트 다항식의 재귀 관계

정리

에르미트 다항식은 다음과 같은 재귀 관계를 만족한다.

Hn(x)=2nHn1(x)Hn+1(x)=2xHn(x)2nHn1(x)=2xHn(x)Hn(x) \begin{align} H_{n}^{\prime}(x) &= 2nH_{n-1}(x) \\ H_{n+1}(x) &= 2xH_{n}(x)-2nH_{n-1}(x) \\ &= 2xH_{n}(x)-H_{n}^{\prime}(x) \nonumber \end{align}

증명

(1)(1)

생성함수를 이용한 풀이

에르미트 다항식의 생성함수

Φ(x,t)=e2xtt2=n=0Hn(x)tnn! \Phi (x,t) = e^{2xt-t^{2}}=\sum \limits _{n=0}^{\infty} H_{n}(x)\frac{t^{n}}{n!}

에르미트 다항식의 생성함수를 미분하면 다음과 같다.

2te2xtt2=n=0Hn(x)tnn! 2te^{2xt-t^{2}} = \sum \limits _{n=0}^{\infty}H_{n}^{\prime}(x)\frac{t^{n}}{n!}

그러면 좌변은 다시 생성함수의 정의에 의해,

2tn=0Hn(x)tnn!=2te2xtt2=n=0Hn(x)tnn! 2t\sum \limits _{n=0}^{\infty} H_{n}(x)\frac{t^{n}}{n!}=2te^{2xt-t^{2}}=\sum \limits _{n=0}^{\infty}H_{n}^{\prime}(x)\frac{t^{n}}{n!}

이를 정리하면 다음을 얻는다.

n=0Hn(x)tnn!=n=02tHn(x)tnn!=n=02(n+1)Hn(x)tn+1(n+1)! \begin{align*} \sum \limits _{n=0}^{\infty}H_{n}^{\prime}(x)\frac{t^{n}}{n!} &= \sum \limits _{n=0}^{\infty} 2tH_{n}(x)\frac{t^{n}}{n!} \\ &= \sum \limits _{n=0}^{\infty}2(n+1)H_{n}(x)\frac{t^{n+1}}{(n+1)!} \end{align*}

양변의 tnn!\dfrac{t^{n}}{n!}항의 계수를 비교해보면 다음과 같다.

Hn(x)=2nHn1(x) H_{n}^{\prime}(x)=2nH_{n-1}(x)

미분 연산자를 이용한 풀이

에르미트 다항식

Hn(x)=(1)nex2dndxnex2 H_{n}(x)=(-1)^{n}e^{x^{2}}\frac{ d ^{n}}{ dx^{n} }e^{-x^{2}}

미분 연산자D=ddxD = \dfrac{d }{dx}라고 표기하자. 에르미트 다항식을 한 번 미분하면,

DHn(x)=D[(1)nex2Dnex2]=(1)n2xex2Dnex2+(1)nex2Dn+1ex2=(1)n2xex2Dnex2+(1)nex2Dn[(2x)ex2] \begin{align*} DH_{n}(x) &= D\left[ (-1)^{n}e^{x^{2}}D^{n}e^{-x^{2}} \right] \\ &= (-1)^{n}2x e^{x^{2}}D^{n}e^{-x^{2}}+(-1)^{n}e^{x^{2}}D^{n+1}e^{-x^{2}} \\ &= (-1)^{n}2x e^{x^{2}}D^{n}e^{-x^{2}}+(-1)^{n}e^{x^{2}}D^{n}\left[ (-2x)e^{-x^{2}}\right] \end{align*}

여기서 두번째 항에 라이프니츠 규칙을 적용하면 DHn(x)=(1)n2xex2Dnex2+(1)nex2k=0nn!(nk)!k!Dk(2x)Dnkex2=(1)n2xex2Dnex2+(1)nex2k=01n!(nk)!k!Dk(2x)Dnkex2=(1)n2xex2Dnex2+(1)nex2[2xDnex22nDn1ex2]=2n(1)n+1ex2Dn1ex2=2n(1)n1ex2Dn1ex2=2nHn(x) \begin{align*} DH_{n}(x) &= (-1)^{n}2x e^{x^{2}}D^{n}e^{-x^{2}}+(-1)^{n}e^{x^{2}}\sum \limits _{k=0}^{n}\frac{n!}{(n-k)!k!}D^{k}(-2x)D^{n-k}e^{-x^{2}} \\ &= (-1)^{n}2x e^{x^{2}}D^{n}e^{-x^{2}}+(-1)^{n}e^{x^{2}}\sum \limits _{k=0}^{1}\frac{n!}{(n-k)!k!}D^{k}(-2x)D^{n-k}e^{-x^{2}} \\ &= (-1)^{n}2x e^{x^{2}}D^{n}e^{-x^{2}}+(-1)^{n}e^{x^{2}}\left[ -2xD^{n}e^{-x^{2}}-2nD^{n-1}e^{-x^{2}} \right] \\ &= 2n(-1)^{n+1}e^{x^{2}}D^{n-1}e^{-x^{2}} \\ &= 2n(-1)^{n-1}e^{x^{2}}D^{n-1}e^{-x^{2}} \\ &=2n H_{n}(x) \end{align*} 두번째 등호는 k2k\ge 2일 때 Dk(2x)=0D^{k}(-2x)=0이기 때문에 성립한다.

(2)(2)

(1)(1)에 대한 증명과 같은 방식으로 증명한다. 생성함수를 tt에 대해서 미분하면 다음을 얻는다.

(2x2t)n=0Hn(x)tnn!=(2x2t)e2xtt2=n=0Hn(x)tn1(n1)! (2x-2t)\sum \limits _{n=0}^{\infty}H_{n}(x)\frac{t^{n}}{n!}=(2x-2t)e^{2xt-t^{2}}=\sum \limits _{n=0}^{\infty}H_{n}(x)\frac{t^{n-1}}{(n-1)!}

정리하면 아래와 같다.

n=0Hn(x)tn1(n1)!=n=0[2xHn(x)2tHn(x)]tnn! \sum \limits _{n=0}^{\infty}H_{n}(x)\frac{t^{n-1}}{(n-1)!}=\sum \limits _{n=0}^{\infty}\left[2xH_{n}(x)-2tH_{n}(x)\right]\frac{t^{n}}{n!}

양변의 tnn!\dfrac{t^{n}}{n!}항의 계수를 비교해보면 다음을 얻는다.

Hn+1(x)=2xHn(x)2tHn(x) H_{n+1}(x)=2xH_{n}(x)-2tH_{n}(x)

또한 (1)(1)에 의해서 다음이 성립한다.

Hn+1(x)=2xHn(x)Hn(x) H_{n+1}(x)=2xH_{n}(x)-H_{n}^{\prime}(x)