logo

움직이는 점전하가 만드는 전기장 📂전자기학

움직이는 점전하가 만드는 전기장

개요 1

5D6FB6AA3.png

움직이는 점전하가 만드는 전자기장은 다음과 같다.

E(r,t)=q4πϵ0(u)3[(c2v2)u+×(u×a)]B(r,t)=1c×E(r,t) \begin{align*} \mathbf{E}(\mathbf{r}, t) &= \frac{q}{4\pi\epsilon_{0}} \frac{\cR} {( \bcR\cdot \mathbf{u} )^3 } \left[(c^2-v^2)\mathbf{u} +\bcR\times (\mathbf{u} \times \mathbf{a} ) \right] \\ \mathbf{B} (\mathbf{ r}, t) &=\frac{1}{c} \crH\times \mathbf{ E } (\mathbf{ r}, t) \end{align*}

설명

전기장에 대한 유도과정을 소개한다.

유도

움직이는 점전하가 만드는 전기장, 자기장은 리에나르-비케르트 전위를 사용하여 구할 수 있다.

V(r,t)=14πϵ0qc(cv),A(r,t)=vc2V(r,t) V(\mathbf{r}, t)= \frac{1}{4\pi \epsilon_{0}} \frac{qc}{ (\cR c -\bcR\cdot \mathbf{v})} ,\quad \mathbf{A}(\mathbf{r}, t) = \frac{ \mathbf{v} } {c^2} V(\mathbf{r}, t)

또한 전자기장은 아래의 식으로 구할 수 있다.

E=VAt,B=×A \mathbf{ E} = -\nabla V -\frac{\partial \mathbf{ A} }{\partial t},\quad \mathbf{B}=\nabla \times \mathbf{A}

V\nabla VAt\dfrac{\partial \mathbf{A}}{\partial t}를 차례로 구해보자. 우선 V\nabla V를 계산해보면

V=qc4πϵ01(cv) \nabla V=\frac{qc}{4 \pi \epsilon_{0}} \nabla \dfrac{1}{(\cR c - \bcR \cdot \mathbf{v}) }

이때 ddx(1f(x))=1[f(x)]2f(x)\dfrac{ d}{dx} \left( \dfrac{1}{f(x)} \right)=\dfrac{-1}{ [f(x)]^2} f^{\prime}(x)이므로

V=qc4πϵ01(cv)2(cv) \begin{equation} \nabla V = \frac{qc}{4\pi\epsilon_{0}} \frac{-1}{ (\cR c -\bcR \cdot \mathbf{v} )^2}\nabla (\cR c -\bcR \cdot \mathbf{v} ) \end{equation}

따라서 \nabla \cR(v)\nabla (\bcR \cdot \mathbf{v})를 계산하면 된다. 우선 (v)\nabla ( \bcR \cdot \mathbf{v} )부터 계산해보면 곱셈규칙 2에 의해서

(v)=()v+(v)+×(×v)+v×(×) \begin{equation} \nabla (\bcR \cdot \mathbf{v}) = (\bcR \cdot \nabla ) \mathbf{v}+(\mathbf{v} \cdot \nabla ) \bcR + \bcR\times (\nabla \times \mathbf{v}) +\mathbf{v}\times (\nabla \times \bcR) \end{equation}

첫 번째 항

()v=(xx+yy+zz)v=xdvdtrtrx+ydvdtrtry+zdvdtrtrz=dvdtr(xtrx+ytry+ztrz)=a(tr) \begin{align*} (\bcR \cdot \nabla) \mathbf{v} &= \left( \cR_{x} \frac{\partial}{\partial x} + \cR _{y} \frac{\partial}{\partial y}+\cR_{z}\frac{\partial }{\partial z} \right)\mathbf{v} \\[1em] &= \cR_{x}\frac{d \mathbf{v} }{dt_{r}}\frac{\partial t_{r}}{\partial x} +\cR_{y}\frac{d \mathbf{v} }{dt_{r}}\frac{\partial t_{r}}{\partial y} + \cR_{z}\frac{d \mathbf{v} }{dt_{r}}\frac{\partial t_{r}}{\partial z} \\[1em] &= \frac{d \mathbf{v} }{ dt_{r}} \left( \cR_{x}\frac{\partial t_{r}}{\partial x} + \cR_{y}\frac{\partial t_{r}}{\partial y}+\cR_{z}\frac{\partial t_{r}}{\partial z}\right) \\[1em] &= \mathbf{a} ( \bcR \cdot \nabla t_{r}) \end{align*}

이때 a\mathbf{a}는 지연시각일 때 입자(점전하)의 가속도이다.

두 번째 항

=rw\bcR=\mathbf{r}-\mathbf{w}이므로

(v)=(v)r(v)w \begin{equation} (\mathbf{v} \cdot \nabla ) \bcR=(\mathbf{v}\cdot \nabla)\mathbf{r} -(\mathbf{v}\cdot \nabla ) \mathbf{w} \end{equation}

임의의 벡터 A=(Ax,Ay,Az)\mathbf{A}=(A_{x}, A_{y}, A_{z})에 대해서

(A)r=(Axx+Ayy+Azz)(xx^+yy^+zz^)=Axx^+Ayy^+Azz^=A \begin{align*} (\mathbf{A} \cdot \nabla ) \mathbf{r} &= \left( A_{x}\frac{\partial}{\partial x}+A_{y}\frac{\partial}{\partial y}+A_{z}\frac{\partial}{\partial z} \right) ( x \hat{\mathbf{x}} + y \hat{\mathbf{y}} +z\hat{ \mathbf{z} }) \\ &= A_{x}\hat{\mathbf{x}}+A_{y} \hat{\mathbf{y}} + A_{z}\hat{\mathbf{z}} \\ &= \mathbf{A} \end{align*}

이고

(A)w(tr)=(Axx+Ayy+Azz)w=Axwx+Aywy+Azwz=Axwtrtrx+Aywtrtry+Azwtrtrz=Axvtrx+Ayvtry+Azvtrz=v(Axtrx+Aytry+Aztrz)=v(Atr) \begin{align*} (\mathbf{A} \cdot \nabla ) \mathbf{w}(t_{r}) &= \left( A_{x}\frac{\partial}{\partial x}+A_{y}\frac{\partial}{\partial y}+A_{z}\frac{\partial}{\partial z} \right) \mathbf{w} \\[1em] &= A_{x}\frac{\partial \mathbf{w} } {\partial x}+A_{y}\frac{\partial \mathbf{w} }{\partial y}+A_{z}\frac{\partial \mathbf{w} }{\partial z} \\[1em] &= A_{x}\frac{\partial \mathbf{w} }{\partial t_{r}}\frac{\partial t_{r}} {\partial x}+A_{y}\frac{\partial \mathbf{w} }{\partial t_{r}}\frac{\partial t_{r}}{\partial y}+A_{z}\frac{\partial \mathbf{w} }{\partial t_{r}}\frac{\partial t_{r}}{\partial z} \\[1em] &= A_{x} \mathbf{v}\frac{\partial t_{r}} {\partial x}+A_{y}\mathbf{v}\frac{\partial t_{r}}{\partial y}+A_{z}\mathbf{v}\frac{\partial t_{r}}{\partial z} \\[1em] &= \mathbf{v} \left( A_{x} \frac{\partial t_{r}} {\partial x}+A_{y}\frac{\partial t_{r}}{\partial y}+A_{z}\frac{\partial t_{r}}{\partial z}\right) \\[1em] &= \mathbf{v}(\mathbf{A} \cdot \nabla t_{r}) \end{align*} 이므로 (3)(3)

(v)=vv(vtr) (\mathbf{v} \cdot \nabla ) \bcR=\mathbf{v} -\mathbf{v}(\mathbf{v}\cdot \nabla t_{r} )

세 번째 항

우선 다음이 성립한다.

×v=(vzyvyz)x^+(vxzvzx)y^+(vyxvxy)z^=(vztrtryvytrtrz)x^+(vxtrtrzvztrtrx)y^+(vytrtrxvxtrtry)z^=(az(tr)yay(tr)z)x^+(ax(tr)zaz(tr)x)y^+(ay(tr)xax(tr)y)z^=a×tr \begin{align*} \nabla \times \mathbf{v} &= \left( \frac{\partial v_{z}}{\partial y} - \frac{\partial v_{y}}{\partial z} \right)\hat{\mathbf{x}} + \left( \frac{\partial v_{x}}{\partial z} - \frac{\partial v_{z}}{\partial x} \right)\hat{\mathbf{y}} + \left( \frac{\partial v_{y}}{\partial x} - \frac{\partial v_{x}}{\partial y} \right)\hat{\mathbf{z}} \\[1em] &= \left( \frac{\partial v_{z}}{\partial t_{r}} \frac{t_{r}}{\partial y} - \frac{\partial v_{y}}{\partial t_{r}} \frac{t_{r}}{\partial z} \right)\hat{\mathbf{x}} + \left( \frac{\partial v_{x}}{\partial t_{r}} \frac{t_{r}}{\partial z} - \frac{\partial v_{z}}{\partial t_{r}} \frac{t_{r}}{\partial x} \right)\hat{\mathbf{y}} + \left( \frac{\partial v_{y}}{\partial t_{r}} \frac{t_{r}}{\partial x} - \frac{\partial v_{x}}{\partial t_{r}} \frac{t_{r}}{\partial y} \right)\hat{\mathbf{z}} \\[1em] &= \Big( a_{z} (\nabla t_{r})_{y} - a_{y} (\nabla t_{r})_{z} \Big)\hat{\mathbf{x}} + \Big( a_{x} (\nabla t_{r})_{z} - a_{z} (\nabla t_{r})_{x} \Big)\hat{\mathbf{y}} + \Big( a_{y} (\nabla t_{r})_{x} - a_{x} (\nabla t_{r})_{y} \Big)\hat{\mathbf{z}} \\[1em] &= -\mathbf{a} \times \nabla t_{r} \end{align*}

따라서

×(×v)=×(a×tr) \bcR \times ( \nabla \times \mathbf{v} )= -\bcR\times (\mathbf{a} \times \nabla t_{r})

네 번째 항

=rw\bcR=\mathbf{r}-\mathbf{w}이고, ×r=0\nabla \times \mathbf{r}=0이므로

×=×r×w=×w \nabla \times \bcR = \nabla \times \mathbf{r} -\nabla \times \mathbf{w}=-\nabla \times \mathbf{w}

이때 바로 위에서 계산했던 ×v=a×tr\nabla \times \mathbf{v} = -\mathbf{a} \times \nabla t_{r}의 결과를 이용하면 ×w=v×tr\nabla \times \mathbf{w} = -\mathbf{v} \times \nabla t_{r}임을 알 수 있다. 따라서

v×(×)=v×(×w)=v×(v×tr) \mathbf{v}\times (\nabla \times \bcR)=\mathbf{v} \times (- \nabla \times \mathbf{w})=\mathbf{v} \times (\mathbf{v} \times \nabla t_{r})

이제 위의 계산 결과들을 (2)(2)에 대입하면

(v)=a(tr)+vv(vtr)×(a×tr)+v×(v×tr)=a(tr)+vv(vtr)[a(tr)tr(a)]+[v(vtr)tr(vv)]=v+tr(a)tr(vv)=v+(av2)tr \begin{align} \nabla (\bcR \cdot \mathbf{v} ) &= \mathbf{a} ( \bcR \cdot \nabla t_{r}) + \mathbf{v} -\mathbf{v}(\mathbf{v} \cdot \nabla t_{r}) -\color{blue}{\abcR\times(\mathbf{a} \times \nabla t_{r} )} +\color{green}{\mathbf{v} \times (\mathbf{v} \times \nabla t_{r})} \nonumber \\[1em] &= \mathbf{a} ( \bcR \cdot \nabla t_{r}) + \mathbf{v} -\mathbf{v}(\mathbf{v} \cdot \nabla t_{r}) -\color{blue}{\left[\mathbf{a} ( \abcR \cdot \nabla t_{r}) - \nabla t_{r}(\abcR \cdot \mathbf{a} ) \right]}+ \color{green}{\left[ \mathbf{v}(\mathbf{v} \cdot \nabla t_{r} ) -\nabla t_{r} (\mathbf{v} \cdot \mathbf{v}) \right] } \nonumber \\[1em] &=\mathbf{v} + \nabla t_{r}(\bcR \cdot \mathbf{a}) -\nabla t_{r}( \mathbf{v} \cdot \mathbf{v}) \nonumber \\[1em] &= \mathbf{v}+( \bcR \cdot \mathbf{a} -v^2) \nabla t_{r} \end{align}

두번째 등호는 BAC-CAB 공식에 의해 성립한다.

결론

=c(ttr)\cR=c(t-t_{r})이므로 =ctr\nabla \cR = -c\nabla t_{r}이다. 이와 (4)(4)(1)(1)에 대입하면

V=qc4πϵ01(cv)2(cv)=qc4πϵ01(cv)2[c(v)]=qc4πϵ01(cv)2[c2trv(av2)tr]=qc4πϵ01(cv)2[v+(c2v2+a)tr] \begin{align} \nabla V &= \frac{qc}{4\pi\epsilon_{0}} \frac{-1}{ (\cR c -\bcR \cdot \mathbf{v} )^2}\nabla (\cR c -\bcR \cdot \mathbf{v} ) \nonumber \\[1em] &= \frac{qc}{4\pi\epsilon_{0}} \frac{-1}{ (\cR c -\bcR \cdot \mathbf{v} )^2} \Big[ c\nabla \cR -\nabla (\bcR \cdot \mathbf{v} ) \Big] \nonumber \\[1em] &=\frac{qc}{4\pi\epsilon_{0}} \frac{-1}{ (\cR c -\bcR \cdot \mathbf{v} )^2} \Big[ -c^2\nabla t_{r} -\mathbf{v}-(\bcR \cdot \mathbf{a} -v^2)\nabla t_{r} \Big] \nonumber \\[1em] &=\frac{qc}{4\pi\epsilon_{0}} \frac{1}{ (\cR c -\bcR \cdot \mathbf{v} )^2} \Big[ \mathbf{v} + (c^2 -v^2+\bcR \cdot \mathbf{a} )\nabla t_{r}\Big] \end{align}

그리고 지연 시각의 기울기가 아래와 같다.

tr=cv \nabla t_{r} = \frac {-\bcR }{\cR c -\bcR \cdot \mathbf{v} }

이를 (5)(5)에 대입하면

V=qc4πϵ01(cv)2[v+(c2v2+a)tr]=qc4πϵ01(cv)2[v+(c2v2+a)cv]=qc4πϵ01(cv)3[(cv)v(c2v2+a)] \begin{align*} \nabla V &= \frac{qc}{4\pi\epsilon_{0}} \frac{1}{ (\cR c -\bcR \cdot \mathbf{v} )^2} \left[ \mathbf{v} + (c^2 -v^2+\bcR \cdot \mathbf{a} )\nabla t_{r}\right] \\ &= \frac{qc}{4\pi\epsilon_{0}} \frac{1}{ (\cR c -\bcR \cdot \mathbf{v} )^2} \left[ \mathbf{v} + (c^2 -v^2+\bcR \cdot \mathbf{a} ) \frac {-\bcR }{\cR c -\bcR \cdot \mathbf{v} } \right] \\ &= \frac{qc}{4\pi\epsilon_{0}} \frac{1}{ (\cR c -\bcR \cdot \mathbf{v} )^3} \Big[ (\cR c -\bcR \cdot \mathbf{v})\mathbf{v} - (c^2 -v^2+\bcR \cdot \mathbf{a} ) \bcR \Big] \end{align*}

이제 At\dfrac{\partial \mathbf{A}}{\partial t}를 구하면 끝이다. 계산 해보면 결과는 아래와 같다.

At=qc4πϵ01(cv)3[(c+v)(a/cv)+cv(c2v2+a)] \frac{ \partial \mathbf{A}}{ \partial t }=\frac{qc}{4\pi \epsilon_{0}} \frac{1}{(\cR c -\bcR \cdot \mathbf{v})^{3}}\left[ (\cR c +\bcR\cdot \mathbf{v})(\cR\mathbf{a}/c-\mathbf{v})+ \frac{\cR}{c}\mathbf{v}\left( c^{2} -v^{2}+\bcR\cdot \mathbf{a}\right) \right]

ucv\mathbf{u}\equiv c \crH-\mathbf{v}라고 두고 정리하면

E(r,t)=VAt=q4πϵ0(u)3[(c2v2)u+u(a)a(u)]=q4πϵ0(u)3[(c2v2)u+×(u×a)] \begin{align*} \mathbf{E}(\mathbf{r},t) &= -\nabla V - \frac{ \partial \mathbf{A}}{ \partial t} \\ &= \frac{q}{4\pi\epsilon_{0}}\frac{\cR}{(\bcR\cdot \mathbf{u})^{3}}\left[ (c^{2}-v^{2})\mathbf{u} + \mathbf{u}(\bcR\cdot\mathbf{a})-\mathbf{a}(\bcR\cdot\mathbf{u}) \right] \\ &= \frac{q}{4\pi\epsilon_{0}}\frac{\cR}{(\bcR\cdot \mathbf{u})^{3}}\left[ (c^{2}-v^{2})\mathbf{u} + \bcR \times (\mathbf{u}\times \mathbf{a}) \right] \end{align*}


  1. David J. Griffiths, 기초전자기학(Introduction to Electrodynamics, 김진승 역) (4th Edition1 2014), p494-498 ↩︎