코시 곱: 수렴하는 두 멱급수의 곱
📂해석개론 코시 곱: 수렴하는 두 멱급수의 곱 정리 f ( x ) : = ∑ k = 0 ∞ a k x k f(x) : = \sum _{k=0}^{\infty} a_{k} x^{k} f ( x ) := ∑ k = 0 ∞ a k x k 와 g ( x ) : = ∑ k = 0 ∞ b k x k g(x) : = \sum_{k=0}^{\infty} b_{k} x^{k} g ( x ) := ∑ k = 0 ∞ b k x k 의 수렴구간이 ( − r , r ) (-r,r) ( − r , r ) 이고 c k : = ∑ j = 0 k a j b k − j c_{k} := \sum_{j=0}^{k} a_{j} b_{k-j} c k := ∑ j = 0 k a j b k − j 이라고 하면 ∑ k = 0 ∞ c k x k \sum_{k=0}^{\infty} c_{k} x^{k} ∑ k = 0 ∞ c k x k 는 수렴구간 ( − r , r ) (-r,r) ( − r , r ) 상에서 f ( x ) g ( x ) f(x)g(x) f ( x ) g ( x ) 로 수렴한다.
설명 계수들의 곱들이 알아서 두 함수의 곱의 계수로 수렴해준다는 점은 사실 꽤 신기한 일이다. 그냥 유한다항함수였다면 증명조차 필요 없을 정도로 당연하지만, 멱급수 는 무한히 많은 항을 가지기 때문이다.
증명 x ∈ ( − r , r ) x \in (-r,r) x ∈ ( − r , r ) 와 n ∈ N n \in \mathbb{N} n ∈ N 을 하나씩 픽스하고 다음과 같이 함수열들을 정의하자.
f n ( x ) : = ∑ k = 0 n a k x k g n ( x ) : = ∑ k = 0 n b k x k h n ( x ) : = ∑ k = 0 n c k x k
\begin{align*}
f_{n} (x) : =& \sum_{k=0}^{n} a_{k} x^{k}
\\ g_{n} (x) : =& \sum_{k=0}^{n} b_{k} x^{k}
\\ h_{n} (x) : =& \sum_{k=0}^{n} c_{k} x^{k}
\end{align*}
f n ( x ) := g n ( x ) := h n ( x ) := k = 0 ∑ n a k x k k = 0 ∑ n b k x k k = 0 ∑ n c k x k
유한히 많은 항에 대해서는 덧셈에 대한 교환법칙이 성립하므로
h n ( x ) = ∑ k = 0 n c k x k = ∑ k = 0 n ∑ j = 0 k a j b k − j x j x k − j = ∑ j = 0 0 a j b 0 − j x j x 0 − j + ∑ j = 0 1 a j b 1 − j x j x 1 − j + ⋯ + ∑ j = 0 n a j b n − j x j x n − j = + a 0 b 0 x 0 x 0 + a 0 b 1 x 0 x 1 + a 1 b 0 x 1 x 0 ⋮ + a 0 b n x 0 x n + a 1 b n − 1 x 1 x n − 1 + ⋯ + a n b n x n x 0 ( sum by column ) = a 0 x 0 ∑ k = 0 n b k x k + a 1 x 1 ∑ k = 1 n b k x k − 1 + ⋯ + a n x n ∑ k = n n b k x k − k = ∑ j = 0 n a j x j ∑ k = j n b k − j x k − j = ∑ j = 0 n a j x j g n − j ( x ) = ∑ j = 0 n a j x j [ g n − j ( x ) + g ( x ) − g ( x ) ] = g ( x ) ∑ j = 0 n a j x j + ∑ j = 0 n a j x j [ g n − j ( x ) − g ( x ) ] = g ( x ) f n ( x ) + ∑ j = 0 n a j x j [ g n − j ( x ) − g ( x ) ]
\begin{align*}
h_{n} (x) =& \sum_{k=0}^{n} c_{k} x^{k}
\\ =& \sum_{k=0}^{n} \sum_{j=0}^{k} a_{j} b_{k-j} x^{j} x^{k-j}
% \\ =& \sum_{k=0}^{n} \left[ a_{0} b_{k} x^{0} x^{k} + a_{1} b_{k-1} x^{1} x^{k-1} + \cdots + a_{k-1} b_{1} x^{1} x^{k-1} + a_{k} b_{0} x^{0} x^{k} \right]
\\ =& \sum_{j=0}^{0} a_{j} b_{0-j} x^{j} x^{0-j} + \sum_{j=0}^{1} a_{j} b_{1-j} x^{j} x^{1-j} + \cdots + \sum_{j=0}^{n} a_{j} b_{n-j} x^{j} x^{n-j}
\\ =& + a_{0} b_{0} x^{0} x^{0}
\\ & + a_{0} b_{1} x^{0} x^{1} + a_{1} b_{0} x^{1} x^{0}
\\ & \vdots
\\ & + a_{0} b_{n} x^{0} x^{n} + a_{1} b_{n-1} x^{1} x^{n-1} + \cdots + a_{n} b_{n} x^{n} x^{0}
\\ (\text{sum by column}) =& a_{0} x^{0} \sum_{k=0}^{n} b_{k} x^{k} + a_{1} x^{1} \sum_{k=1}^{n} b_{k} x^{k-1} + \cdots + a_{n} x^{n} \sum_{k=n}^{n} b_{k} x^{k-k}
\\ =& \sum_{j=0}^{n} a_{j} x^{j} \sum_{k=j}^{n} b_{k-j} x^{k-j}
\\ =& \sum_{j=0}^{n} a_{j} x^{j} g_{n-j} (x)
\\ =& \sum_{j=0}^{n} a_{j} x^{j} \left[ g_{n-j} (x) + g(x) - g(x) \right]
\\ =& g(x) \sum_{j=0}^{n} a_{j} x^{j} + \sum_{j=0}^{n} a_{j} x^{j} \left[ g_{n-j} (x) - g(x) \right]
\\ =& g(x) f_{n} (x) + \sum_{j=0}^{n} a_{j} x^{j} \left[ g_{n-j} (x) - g(x) \right]
\end{align*}
h n ( x ) = = = = ( sum by column ) = = = = = = k = 0 ∑ n c k x k k = 0 ∑ n j = 0 ∑ k a j b k − j x j x k − j j = 0 ∑ 0 a j b 0 − j x j x 0 − j + j = 0 ∑ 1 a j b 1 − j x j x 1 − j + ⋯ + j = 0 ∑ n a j b n − j x j x n − j + a 0 b 0 x 0 x 0 + a 0 b 1 x 0 x 1 + a 1 b 0 x 1 x 0 ⋮ + a 0 b n x 0 x n + a 1 b n − 1 x 1 x n − 1 + ⋯ + a n b n x n x 0 a 0 x 0 k = 0 ∑ n b k x k + a 1 x 1 k = 1 ∑ n b k x k − 1 + ⋯ + a n x n k = n ∑ n b k x k − k j = 0 ∑ n a j x j k = j ∑ n b k − j x k − j j = 0 ∑ n a j x j g n − j ( x ) j = 0 ∑ n a j x j [ g n − j ( x ) + g ( x ) − g ( x ) ] g ( x ) j = 0 ∑ n a j x j + j = 0 ∑ n a j x j [ g n − j ( x ) − g ( x ) ] g ( x ) f n ( x ) + j = 0 ∑ n a j x j [ g n − j ( x ) − g ( x ) ]
lim n → ∞ f n ( x ) = f ( x ) \lim _{n \to \infty} f_{n} (x) = f(x) lim n → ∞ f n ( x ) = f ( x ) 이므로 lim n → ∞ ∑ j = 0 n a j x j [ g n − j ( x ) − g ( x ) ] = 0 \lim _{n \to \infty} \sum_{j=0}^{n} a_{j} x^{j} \left[ g_{n-j} (x) - g(x) \right] = 0 lim n → ∞ ∑ j = 0 n a j x j [ g n − j ( x ) − g ( x ) ] = 0 임을 보이기만 하면 된다.
임의의 양수 ε > 0 \varepsilon > 0 ε > 0 이 주어졌다고 하자.수렴구간 내에서 lim n → ∞ g n ( x ) = g ( x ) \lim _{n \to \infty} g_{n} (x) = g(x) lim n → ∞ g n ( x ) = g ( x ) 이고 f ( x ) f(x) f ( x ) 는 절대수렴하므로 모든 자연수 n > j n > j n > j 에 대해
∣ g n − j ( x ) − g ( x ) ∣ ≤ M
| g_{n- j } (x) - g (x) | \le M
∣ g n − j ( x ) − g ( x ) ∣ ≤ M
∑ k = 0 ∞ ∣ a k x k ∣ < M
\sum_{k=0}^{\infty} \left| a_{k} x^{k} \right| < M
k = 0 ∑ ∞ a k x k < M
을 만족하는 M > 0 M > 0 M > 0 가 존재한다. 마찬가지의 이유로 이 M M M 에 대해
l ≥ N ⟹ ∣ g l ( x ) − g ( x ) ∣ < ε 2 M
l \ge N \implies | g_{ l } (x) - g (x) | < {{\varepsilon} \over {2M}}
l ≥ N ⟹ ∣ g l ( x ) − g ( x ) ∣ < 2 M ε
∑ k = N + 1 ∞ ∣ a k x k ∣ < ε 2 M
\sum_{k=N+1}^{\infty} \left| a_{k} x^{k} \right| < {{\varepsilon} \over {2M}}
k = N + 1 ∑ ∞ a k x k < 2 M ε
을 만족하는 N ∈ N N \in \mathbb{N} N ∈ N 을 잡을 수 있다.
이제 n > 2 N n > 2N n > 2 N 이라고 두면
∣ ∑ j = 0 n a j x j [ g n − j ( x ) − g ( x ) ] ∣ = ∣ ∑ j = 0 N a j x j [ g n − j ( x ) − g ( x ) ] + ∑ j = N + 1 n a j x j [ g n − j ( x ) − g ( x ) ] ∣ ≤ ∣ ∑ j = 0 N a j x j [ g n − j ( x ) − g ( x ) ] ∣ + ∣ ∑ j = N + 1 n a j x j [ g n − j ( x ) − g ( x ) ] ∣ ≤ ∑ j = 0 N ∣ a j x j ∣ ∣ g n − j ( x ) − g ( x ) ∣ + ∑ j = N + 1 n ∣ a j x j ∣ ∣ g n − j ( x ) − g ( x ) ∣ ≤ ε 2 M ∑ j = 0 N ∣ a j x j ∣ + M ∑ j = N + 1 n ∣ a j x j ∣ ≤ ε 2 M ⋅ M + M ⋅ ε 2 M ≤ ε 2 + ε 2 = ε
\begin{align*}
\left| \sum_{j=0}^{n} a_{j} x^{j} \left[ g_{n-j} (x) - g(x) \right] \right| =& \left| \sum_{j=0}^{N} a_{j} x^{j} \left[ g_{n-j} (x) - g(x) \right] + \sum_{j=N+1}^{n} a_{j} x^{j} \left[ g_{n-j} (x) - g(x) \right] \right|
\\ \le & \left| \sum_{j=0}^{N} a_{j} x^{j} \left[ g_{n-j} (x) - g(x) \right] \right| + \left| \sum_{j=N+1}^{n} a_{j} x^{j} \left[ g_{n-j} (x) - g(x) \right] \right|
\\ \le & \sum_{j=0}^{N} \left| a_{j} x^{j} \right| \left| g_{n-j} (x) - g(x) \right|+ \sum_{j=N+1}^{n} \left| a_{j} x^{j} \right| \left| g_{n-j} (x) - g(x) \right|
\\ \le & {{\varepsilon} \over {2M}} \sum_{j=0}^{N} \left| a_{j} x^{j} \right| + M \sum_{j=N+1}^{n} \left| a_{j} x^{j} \right|
\\ \le & {{\varepsilon} \over {2M}} \cdot M + M \cdot {{\varepsilon} \over {2M}}
\\ \le & {{\varepsilon} \over {2}} + {{\varepsilon} \over {2}}
\\ =& \varepsilon
\end{align*}
j = 0 ∑ n a j x j [ g n − j ( x ) − g ( x ) ] = ≤ ≤ ≤ ≤ ≤ = j = 0 ∑ N a j x j [ g n − j ( x ) − g ( x ) ] + j = N + 1 ∑ n a j x j [ g n − j ( x ) − g ( x ) ] j = 0 ∑ N a j x j [ g n − j ( x ) − g ( x ) ] + j = N + 1 ∑ n a j x j [ g n − j ( x ) − g ( x ) ] j = 0 ∑ N a j x j ∣ g n − j ( x ) − g ( x ) ∣ + j = N + 1 ∑ n a j x j ∣ g n − j ( x ) − g ( x ) ∣ 2 M ε j = 0 ∑ N a j x j + M j = N + 1 ∑ n a j x j 2 M ε ⋅ M + M ⋅ 2 M ε 2 ε + 2 ε ε
■