전위의 다중극 전개와 쌍극자 모멘트 
📂전자기학 전위의 다중극 전개와 쌍극자 모멘트 다중극 전개 모여있는 전하분포를 충분히 멀리서 바라보면 마치 점전하 처럼 보일 것이다. 다시말해 전하분포의 총 전하량이 Q Q Q Q Q Q 전위 를 1 4 π ϵ 0 Q r \dfrac{1}{4\pi\epsilon_{0}} \dfrac{Q}{r} 4 π ϵ 0  1  r Q  
그런데 만약 총 전하량이 0 0 0 0 0 0 다중극 전개 는 총 전하량이 0 0 0 V ( r ) V(\mathbf{r}) V ( r ) 1 r n \dfrac{1}{r^{n}} r n 1  다중극 전개 multipole expansion 라고 한다.
위치 r \mathbf{r} r 
V ( r ) = 1 4 π ϵ 0 ∫ 1 ρ ( r ′ ) d τ ′ 
\begin{equation}
V(\mathbf{r}) = \dfrac{1}{4\pi\epsilon_{0}} \int \dfrac{1}{\cR}\rho (\mathbf{r}^{\prime})d\tau^{\prime}
\label{1}
\end{equation}
 V ( r ) = 4 π ϵ 0  1  ∫ 1  ρ ( r ′ ) d τ ′   
이때 = r − r ′ ( = ∣ ∣ ) \bcR = \mathbf{r} - \mathbf{r}^{\prime} (\cR = \left| \bcR \right|) = r − r ′ ( = ∣ ∣ ) 분리벡터 이다.
\cR 
2 =   r 2 + ( r ′ ) 2 − 2 r r ′ cos  α =   r 2 [ 1 + ( r ′ r ) 2 − 2 r ′ r cos  α ] =   r 2 [ 1 + r ′ r ( r ′ r − 2 cos  α ) ] 
\begin{align*}
\cR ^2 =&\ r^2+(r^{\prime})^2-2rr^{\prime}\cos\alpha
\\ =&\ r^2\left[1+\left(\dfrac{r^{\prime}}{r}\right)^2-2\dfrac{r^{\prime}}{r}\cos\alpha\right]
\\ =&\ r^2\left[1+\dfrac{r^{\prime}}{r}\left( \dfrac{r^{\prime}}{r}-2\cos\alpha\right)\right]
\end{align*}
 2 = = =    r 2 + ( r ′ ) 2 − 2 r r ′ cos α   r 2 [ 1 + ( r r ′  ) 2 − 2 r r ′  cos α ]   r 2 [ 1 + r r ′  ( r r ′  − 2 cos α ) ]  
편의를 위해 각괄호 안의 두번째 항을 통째로 ϵ = r ′ r ( r ′ r − 2 cos  α ) \epsilon=\dfrac{r^{\prime}}{r}\left( \dfrac{r^{\prime}}{r}-2\cos\alpha \right) ϵ = r r ′  ( r r ′  − 2 cos α ) 
= r 1 + ϵ ⟹   1 = 1 r ( 1 + ϵ ) − 1 / 2 
\cR=r\sqrt{1+\epsilon} \implies \dfrac{1}{\cR} = \dfrac{1}{r}(1+\epsilon)^{-1/2}
 = r 1 + ϵ  ⟹ 1  = r 1  ( 1 + ϵ ) − 1/2 
이때 r \mathbf{r} r r ′ r \dfrac{r^{\prime}}{r} r r ′  ϵ ≪ 1 \epsilon \ll 1 ϵ ≪ 1 
이항급수 
∣ x ∣ < 1 |x| < 1 ∣ x ∣ < 1 
( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + α ( α − 1 ) ( α − 2 ) 3 ! x 3 + ⋯ 
(1 + x )^{\alpha} = 1 + \alpha x + \dfrac{\alpha (\alpha-1)}{2!}x^{2} + \dfrac{\alpha (\alpha-1)(\alpha-2)}{3!}x^{3} + \cdots
 ( 1 + x ) α = 1 + αx + 2 ! α ( α − 1 )  x 2 + 3 ! α ( α − 1 ) ( α − 2 )  x 3 + ⋯ 
따라서 ( 1 + ϵ ) − 1 / 2 (1+\epsilon)^{-1/2} ( 1 + ϵ ) − 1/2 
1 = 1 r ( 1 + ϵ ) − 1 / 2 = 1 r ( 1 − 1 2 ϵ + 3 8 ϵ 2 − 5 16 ϵ 3 + ⋯  ) 
\dfrac{1}{\cR} = \dfrac{1}{r}(1+\epsilon)^{-1/2} = \dfrac{1}{r}\left( 1- \dfrac{1}{2}\epsilon+\dfrac{3}{8}\epsilon ^2 -\dfrac{5}{16}\epsilon ^3 +\cdots \right)
 1  = r 1  ( 1 + ϵ ) − 1/2 = r 1  ( 1 − 2 1  ϵ + 8 3  ϵ 2 − 16 5  ϵ 3 + ⋯ ) 
ϵ \epsilon ϵ 
1 = 1 r [ 1 − 1 2 r ′ r ( r ′ r − 2 cos  α ) + 3 8 ( r ′ r ) 2 ( r ′ r − 2 cos  α ) 2 − 5 16 ( r ′ r ) 3 ( r ′ r − 2 cos  α ) 3 + ⋯  ] 
\dfrac{1}{\cR}=\dfrac{1}{r}\left[ 1- \dfrac{1}{2}\dfrac{r^{\prime}}{r}\left( \dfrac{r^{\prime}}{r}-2\cos\alpha \right) +\dfrac{3}{8}\left( \dfrac{r^{\prime}}{r} \right)^2 \left( \dfrac{r^{\prime}}{r}-2\cos\alpha \right) ^2 -\dfrac{5}{16}\left( \dfrac{r^{\prime}}{r}\right)^3 \left( \dfrac{r^{\prime}}{r}-2\cos\alpha \right) ^3 +\cdots \right]
 1  = r 1  [ 1 − 2 1  r r ′  ( r r ′  − 2 cos α ) + 8 3  ( r r ′  ) 2 ( r r ′  − 2 cos α ) 2 − 16 5  ( r r ′  ) 3 ( r r ′  − 2 cos α ) 3 + ⋯ ] 
이를 r ′ r \dfrac{r^{\prime}}{r} r r ′  부록 을 참고하자.
1 = 1 r [ 1 + ( r ′ r ) ( cos  α ) + ( r ′ r ) 2 ( 3 cos  2 α − 1 2 ) + ( r ′ r ) 3 ( 5 cos  2 α − 3 cos  α 2 ) + ⋯  ] 
\dfrac{1}{\cR}=\dfrac{1}{r}\left[ 1+\left(\dfrac{r^{\prime}}{r}\right)\left( \cos\alpha \right) +\left( \dfrac{r^{\prime}}{r} \right)^2 \left( \dfrac{3\cos^2\alpha -1 }{2}\right) +\left( \dfrac{r^{\prime}}{r}\right)^3 \left( \dfrac{5\cos^2\alpha-3\cos\alpha}{2} \right) +\cdots \right]
 1  = r 1  [ 1 + ( r r ′  ) ( cos α ) + ( r r ′  ) 2 ( 2 3 cos 2 α − 1  ) + ( r r ′  ) 3 ( 2 5 cos 2 α − 3 cos α  ) + ⋯ ] 
여기서 각괄호는 급수 ∑ n = 0 ∞ a n ( r ′ r ) n \sum \limits_{n=0}^{\infty} a_{n}\left( \dfrac{r^{\prime}}{r}\right)^n n = 0 ∑ ∞  a n  ( r r ′  ) n a n a_{n} a n  
a 0 =   1 a 1 =   cos  α a 2 =   3 cos  2 α − 1 2 a 3 =   ( 5 cos  2 α − 3 cos  α 2 ) ⋮ 
\begin{align*}
a_{0} =&\ 1
\\ a_{1} =&\ \cos\alpha
\\ a_{2} =&\ \dfrac{3\cos^2\alpha-1}{2}
\\ a_{3} =&\ \left( \dfrac{5\cos^2\alpha-3\cos\alpha}{2} \right)
\\ \vdots &
\end{align*}
 a 0  = a 1  = a 2  = a 3  = ⋮    1   cos α   2 3 cos 2 α − 1    ( 2 5 cos 2 α − 3 cos α  )  
이는 cos  α \cos\alpha cos α 르장드르 다항식  P n ( cos  α ) P_{n}(\cos \alpha) P n  ( cos α ) 
1 = 1 r ∑ n = 0 ∞ ( r ′ r ) n P n ( cos  α ) 
\dfrac{1}{\cR}=\dfrac{1}{r}\sum\limits_{n=0}^{\infty}\left( \dfrac{r^{\prime}}{r}\right)^n P_{n}(\cos\alpha)
 1  = r 1  n = 0 ∑ ∞  ( r r ′  ) n P n  ( cos α ) 
이를 전위 공식 ( 1 ) \eqref{1} ( 1 ) r r r 
V ( r ) = 1 4 π ϵ 0 ∑ n = 0 ∞ 1 r n + 1 ∫ ( r ′ ) n P n ( cos  α ) ρ ( r ′ ) d τ ′ 
V(\mathbf{r})=\dfrac{1}{4\pi\epsilon_{0}}\sum \limits_{n=0}^{\infty} \dfrac{1}{r^{n+1}} \int (r^{\prime})^nP_{n}(\cos\alpha) \rho (\mathbf{r}^{\prime}) d\tau^{\prime}
 V ( r ) = 4 π ϵ 0  1  n = 0 ∑ ∞  r n + 1 1  ∫ ( r ′ ) n P n  ( cos α ) ρ ( r ′ ) d τ ′ 
이 급수를 다시 전개하면
V ( r ) = 1 4 π ϵ 0 [ 1 r ∫ r ′ cos  α ρ ( r ′ ) d τ ′ + 1 r 2 ∫ r ′ cos  α ρ ( r ′ ) d τ ′ + 1 r 3 ∫ ( r ′ ) 2 3 cos  2 α − 1 2 ρ ( r ′ ) d τ ′ + ⋯ ] 
\begin{align*}
V(\mathbf{r}) = \dfrac{1}{4\pi\epsilon_{0}} \bigg[ &\dfrac{1}{r} \int r^{\prime}\cos\alpha \rho (\mathbf{r}^{\prime})d\tau^{\prime}
\\ &+ \dfrac{1}{r^2}\int r^{\prime}\cos\alpha \rho (\mathbf{r}^{\prime})d\tau^{\prime} + \dfrac{1}{r^3}\int(r^{\prime})^2\dfrac{3\cos^2\alpha -1 }{2}\rho (\mathbf{r}^{\prime})d\tau^{\prime} + \cdots \bigg]
\end{align*}
 V ( r ) = 4 π ϵ 0  1  [  r 1  ∫ r ′ cos α ρ ( r ′ ) d τ ′ + r 2 1  ∫ r ′ cos α ρ ( r ′ ) d τ ′ + r 3 1  ∫ ( r ′ ) 2 2 3 cos 2 α − 1  ρ ( r ′ ) d τ ′ + ⋯ ]  
첫번째 항은 홀극에 의해 생기는 전위, 두번째 항은 쌍극자에 의해 생기는 전위, 세번째 항은 사중극자에 의해 생기는 전위이다. n n n 2 n − 1 2^{n-1} 2 n − 1 
쌍극자항과 쌍극자 모멘트 다중극 전개식은 r r r r r r 홀극 monopole, 모노폴  의 약자이다.
V mono ( r ) = 1 4 π ϵ 0 Q r 
V_{\text{mono}}(\mathbf{r}) = \dfrac{1}{4\pi\epsilon_{0}}\dfrac{Q}{r}
 V mono  ( r ) = 4 π ϵ 0  1  r Q  
만약 모여있는 전하들의 총 전하가 0 0 0 0 0 0 + + + − - − 0 0 0 0 0 0 쌍극자 dipole, 다이폴 의 약자이다.
V dip ( r ) = 1 4 π ϵ 0 1 r 2 ∫ r ′ cos  α ρ ( r ′ ) d τ ′ 
V_{\text{dip}}(\mathbf{r})=\dfrac{1}{4\pi\epsilon_{0}}\dfrac{1}{r^2}\int r^{\prime} \cos \alpha \rho (\mathbf{r}^{\prime})d\tau^{\prime}
 V dip  ( r ) = 4 π ϵ 0  1  r 2 1  ∫ r ′ cos α ρ ( r ′ ) d τ ′ 
여기서 r ^ ⋅ r ′ = r ′ cos  α \hat{\mathbf{r}}\cdot\mathbf{r}^{\prime}=r^{\prime}\cos\alpha r ^ ⋅ r ′ = r ′ cos α 
V dip ( r ) = 1 4 π ϵ 0 1 r 2 r ^ ⋅ ∫ r ′ ρ ( r ′ ) d τ ′ 
V_{\text{dip}}(\mathbf{r})=\dfrac{1}{4\pi\epsilon_{0}}\dfrac{1}{r^2}\hat{\mathbf{r}}\cdot\int \mathbf{r}^{\prime} \rho (\mathbf{r}^{\prime})d\tau^{\prime}
 V dip  ( r ) = 4 π ϵ 0  1  r 2 1  r ^ ⋅ ∫ r ′ ρ ( r ′ ) d τ ′ 
이 적분값은 r \mathbf{r} r 쌍극자 모멘트 dipole moment 라 하고 p \mathbf{p} p 
p = ∫ r ′ ρ ( r ′ ) d τ ′ 
\mathbf{p}=\int\mathbf{r}^{\prime}\rho (\mathbf{r}^{\prime})d\tau^{\prime}
 p = ∫ r ′ ρ ( r ′ ) d τ ′ 
쌍극자 모멘트를 써서 쌍극자의 전위를 간단하게 나타낼 수 있다.
V dip ( r ) = 1 4 π ϵ 0 p ⋅ r ^ r 2 
V_{\text{dip}}(\mathbf{r})=\dfrac{1}{4\pi\epsilon_{0}}\dfrac{\mathbf{p}\cdot\hat{\mathbf{r}} } {r^2}
 V dip  ( r ) = 4 π ϵ 0  1  r 2 p ⋅ r ^  
부록 1 − 1 2 r ′ r ( r ′ r − 2 cos  α ) + 3 8 ( r ′ r ) 2 ( r ′ r − 2 cos  α ) 2 − 5 16 ( r ′ r ) 3 ( r ′ r − 2 cos  α ) 3 + ⋯ 
1- \dfrac{1}{2}\dfrac{r^{\prime}}{r}\left( \dfrac{r^{\prime}}{r}-2\cos\alpha \right) +\dfrac{3}{8}\left( \dfrac{r^{\prime}}{r} \right)^{2} \left( \dfrac{r^{\prime}}{r}-2\cos\alpha \right)^2 -\dfrac{5}{16}\left( \dfrac{r^{\prime}}{r}\right)^3 \left( \dfrac{r^{\prime}}{r}-2\cos\alpha \right)^3 +\cdots
 1 − 2 1  r r ′  ( r r ′  − 2 cos α ) + 8 3  ( r r ′  ) 2 ( r r ′  − 2 cos α ) 2 − 16 5  ( r r ′  ) 3 ( r r ′  − 2 cos α ) 3 + ⋯ 
위의 식의 제곱항, 세제곱항을 풀어서 쓰면
1 − 1 2 r ′ r ( r ′ r − 2 cos  α ) + 3 8 ( r ′ r ) 2 [ ( r ′ r ) 2 − 4 r ′ cos  α r + 4 cos  2 α ] 
1- \dfrac{1}{2}\dfrac{r^{\prime}}{r}\left( \dfrac{r^{\prime}}{r}-2\cos\alpha \right) +\dfrac{3}{8}\left( \dfrac{r^{\prime}}{r} \right)^2 \left[ \left( \dfrac{r^{\prime}}{r}\right)^2-\dfrac{4r^{\prime}\cos\alpha}{r}+4\cos^2\alpha \right]
 1 − 2 1  r r ′  ( r r ′  − 2 cos α ) + 8 3  ( r r ′  ) 2 [ ( r r ′  ) 2 − r 4 r ′ cos α  + 4 cos 2 α ] 
− 5 16 ( r ′ r ) 3 [ ( r ′ r ) 3 − 3 ( r ′ r ) 2 2 cos  α + 3 ( r ′ r ) 4 cos  2 α − 8 cos  3 α ] + ⋯ 
-\dfrac{5}{16}\left( \dfrac{r^{\prime}}{r}\right)^3 \left[ \left( \dfrac{r^{\prime}}{r}\right)^3 -3\left(\dfrac{r^{\prime}}{r}\right)^22\cos\alpha + 3\left( \dfrac{r^{\prime}}{r}\right)4\cos^2\alpha-8\cos^3\alpha \right] +\cdots
 − 16 5  ( r r ′  ) 3 [ ( r r ′  ) 3 − 3 ( r r ′  ) 2 2 cos α + 3 ( r r ′  ) 4 cos 2 α − 8 cos 3 α ] + ⋯ 
이제 r ′ r \dfrac{r^{\prime}}{r} r r ′  
1 + ( r ′ r ) cos  α + ( r ′ r ) 2 ( − 1 2 + 3 2 cos  2 α ) + ( r ′ r ) 3 ( − 3 2 cos  α + 5 2 cos  3 α ) + ⋯ 
1+\left(\dfrac{r^{\prime}}{r}\right)\cos\alpha +\left(\dfrac{r^{\prime}}{r}\right)^2\left(-\dfrac{1}{2} +\dfrac{3}{2}\cos^2\alpha \right)+\left( \dfrac{r^{\prime}}{r} \right)^3 \left( -\dfrac{3}{2}\cos\alpha +\dfrac{5}{2}\cos^3\alpha \right) + \cdots
 1 + ( r r ′  ) cos α + ( r r ′  ) 2 ( − 2 1  + 2 3  cos 2 α ) + ( r r ′  ) 3 ( − 2 3  cos α + 2 5  cos 3 α ) + ⋯ 
이를 정리하면
1 + ( r ′ r ) ( cos  α ) + ( r ′ r ) 2 ( 3 cos  2 α − 1 2 ) + ( r ′ r ) 3 ( 5 cos  2 α − 3 cos  α 2 ) + ⋯ 
1+\left(\dfrac{r^{\prime}}{r}\right)\left( \cos\alpha \right) +\left( \dfrac{r^{\prime}}{r} \right)^2 \left( \dfrac{3\cos^2\alpha -1 }{2}\right) +\left( \dfrac{r^{\prime}}{r}\right)^3 \left( \dfrac{5\cos^2\alpha-3\cos\alpha}{2} \right) +\cdots
 1 + ( r r ′  ) ( cos α ) + ( r r ′  ) 2 ( 2 3 cos 2 α − 1  ) + ( r r ′  ) 3 ( 2 5 cos 2 α − 3 cos α  ) + ⋯