벡터 공간의 리플렉시브 
📂선형대수 벡터 공간의 리플렉시브 정의  X X X 벡터공간 , X ∗ ∗ X^{\ast \ast} X ∗∗ 바이듀얼 이라고 하자. X ∗ ∗ ≈ X X^{\ast \ast} \approx X X ∗∗ ≈ X X X X 리플렉시브 reflexive 라고 한다.
설명 일반적으로 벡터 공간은 듀얼을 취할때마다 점점 그 크기가 더 커진다. 그런데 리플렉시브라는 말은 사실상 듀얼 스페이스 가 계속해서 커지지 않는 공간이라고 보아도 좋다. 리플렉시브한 공간에는 다음의 예시가 있다.
ℓ p \ell^{p} ℓ p 
증명 전략: 이 증명에서만 쓰이는 함수 sign  : C → R \operatorname{sign} : \mathbb{C} \to \mathbb{R} sign : C → R sign  ( λ ) : = { ∣ λ ∣ λ , λ ≠ 0 1 , λ = 0 
\operatorname{sign} ( \lambda ) := \begin{cases} \displaystyle {{| \lambda | } \over { \lambda }} &, \lambda \ne 0
\\ 1 &, \lambda = 0 \end{cases}
 sign ( λ ) := ⎩ ⎨ ⎧  λ ∣ λ ∣  1  , λ  = 0 , λ = 0  λ sign  ( λ ) = ∣ λ ∣ \lambda \operatorname{sign} (\lambda) = | \lambda | λ sign ( λ ) = ∣ λ ∣ 복소수의 부호 sign  \operatorname{sign} sign  의 정의와 조금 다른 것에 주의하라.
우선은 1 p + 1 q = 1 \displaystyle {{1} \over {p}} + {{1} \over {q}} = 1 p 1  + q 1  = 1 ℓ p ∗ ≈ ℓ q {\ell^{p}}^{ \ast } \approx \ell^{q} ℓ p ∗ ≈ ℓ q ϕ : ℓ p ∗ → ℓ q \phi : {\ell^{p}}^{ \ast } \to \ell^{q} ϕ : ℓ p ∗ → ℓ q f ∈ ℓ p ∗ f \in {\ell^{p}}^{ \ast } f ∈ ℓ p ∗ ϕ ( f ) = ( f ( e 1 ) , f ( e 2 ) , …  ) \phi (f) = \left( f(e_{1}) , f(e_{2}) , \dots \right) ϕ ( f ) = ( f ( e 1  ) , f ( e 2  ) , … ) e j e_{j} e j  j j j 1 1 1 0 0 0 e j : = ( … , 0 , 1 , 0 , …  ) e_{j}:=(\dots ,0, 1 , 0 , \dots ) e j  := ( … , 0 , 1 , 0 , … ) 
이제 이 포함된 y j : = sign  ( f q ( e j ) ) f q − 1 ( e j ) ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 1 p ∈ C \displaystyle y_{j} : = {{ \operatorname{sign} \left( f^q (e_{j} ) \right) f^{q-1} (e_{j} ) } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right)^{{{1} \over {p}}} }} \in \mathbb{C} y j  := ( ∑ j = 1 n  ∣ f ( e j  ) ∣ q ) p 1  sign ( f q ( e j  ) ) f q − 1 ( e j  )  ∈ C λ ∈ C \lambda \in \mathbb{C} λ ∈ C ∣ λ ∣ = 1 |\lambda| = 1 ∣ λ ∣ = 1 
∥ y 1 e 1 + ⋯ + y n e n ∥ p p = ∑ j = 1 n ∣ y j ∣ p = ∑ j = 1 n 1 ⋅ ∣ f ( e j ) ∣ ( q − 1 ) p ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 
\| y_{1} e_{1} + \dots + y_{n} e_{n} \|_{p}^{p} = \sum_{j=1}^{n} |y_{j}|^{p} = \sum_{j=1}^{n} {{ 1 \cdot \left| f (e_{j} ) \right|^{(q-1)p} } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right) }}
 ∥ y 1  e 1  + ⋯ + y n  e n  ∥ p p  = j = 1 ∑ n  ∣ y j  ∣ p = j = 1 ∑ n  ( ∑ j = 1 n  ∣ f ( e j  ) ∣ q ) 1 ⋅ ∣ f ( e j  ) ∣ ( q − 1 ) p  
( q − 1 ) p = q (q-1)p = q ( q − 1 ) p = q 
∥ y 1 e 1 + ⋯ + y n e n ∥ p p = 1 
\| y_{1} e_{1} + \dots + y_{n} e_{n} \|_{p}^{p} = 1
 ∥ y 1  e 1  + ⋯ + y n  e n  ∥ p p  = 1 
f ∈ ℓ p ∗ f \in \ell_{p}^{ \ast } f ∈ ℓ p ∗  
f ( y 1 e 1 + ⋯ + y n e n ) = y 1 f ( e 1 ) + ⋯ + y n f ( e n ) = 1 ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 1 p ( sign  ( f q ( e 1 ) ) f q − 1 ( e 1 ) f ( e 1 ) + ⋯ + sign  ( f q ( e n ) ) f q − 1 ( e n ) f ( e n ) ) = 1 ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 1 p ( sign  ( f q ( e 1 ) ) f q ( e 1 ) + ⋯ + sign  ( f q ( e n ) ) f q ( e n ) ) 
\begin{align*}
& f( y_{1} e_{1} + \dots + y_{n} e_{n} )
\\ =& y_{1} f( e_{1} ) + \dots + y_{n} f(e_{n})
\\ =& {{ 1 } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right)^{{{1} \over {p}}} }} \left( \operatorname{sign} \left( f^q (e_{1} ) \right) f^{q-1} (e_{1} ) f(e_{1}) + \dots +\operatorname{sign} \left( f^q (e_{n} ) \right) f^{q-1} (e_{n} ) f(e_{n}) \right)
\\ =& {{ 1 } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right)^{{{1} \over {p}}} }} \left( \operatorname{sign} \left( f^q (e_{1} ) \right) f^{q} (e_{1} )+ \dots +\operatorname{sign} \left( f^q (e_{n} ) \right) f^{q} (e_{n} ) \right)
\end{align*}
 = = =  f ( y 1  e 1  + ⋯ + y n  e n  ) y 1  f ( e 1  ) + ⋯ + y n  f ( e n  ) ( ∑ j = 1 n  ∣ f ( e j  ) ∣ q ) p 1  1  ( sign ( f q ( e 1  ) ) f q − 1 ( e 1  ) f ( e 1  ) + ⋯ + sign ( f q ( e n  ) ) f q − 1 ( e n  ) f ( e n  ) ) ( ∑ j = 1 n  ∣ f ( e j  ) ∣ q ) p 1  1  ( sign ( f q ( e 1  ) ) f q ( e 1  ) + ⋯ + sign ( f q ( e n  ) ) f q ( e n  ) )  
λ sign  ( λ ) = ∣ λ ∣ \lambda \operatorname{sign} (\lambda) = | \lambda | λ sign ( λ ) = ∣ λ ∣ 
sign  \operatorname{sign} sign 
f ( y 1 e 1 + ⋯ + y n e n ) = 1 ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 1 p ( ∣ f ( e 1 ) ∣ q + ⋯ + ∣ f ( e n ) ∣ q ) = ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 1 − 1 p = ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 1 q 
\begin{align*}
f( y_{1} e_{1} + \dots + y_{n} e_{n} ) =& {{ 1 } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right)^{{{1} \over {p}}} }} \left( \left| f (e_{1}) \right|^{q} + \dots + \left| f (e_{n}) \right|^{q} \right)
\\ =& \left( \sum_{j=1}^{n} \left| f(e_{j} ) \right|^{q} \right)^{1- {{1} \over {p}} }
\\ =& \left( \sum_{j=1}^{n} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} }
\end{align*}
 f ( y 1  e 1  + ⋯ + y n  e n  ) = = =  ( ∑ j = 1 n  ∣ f ( e j  ) ∣ q ) p 1  1  ( ∣ f ( e 1  ) ∣ q + ⋯ + ∣ f ( e n  ) ∣ q ) ( j = 1 ∑ n  ∣ f ( e j  ) ∣ q ) 1 − p 1  ( j = 1 ∑ n  ∣ f ( e j  ) ∣ q ) q 1   
Part 1. ∣ ( ∑ j = 1 ∞ ∣ f ( e j ) ∣ q ) 1 q ∣ ≤ ∥ f ∥ \displaystyle \left| \left( \sum_{j=1}^{\infty} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} } \right| \le \| f \|  ( j = 1 ∑ ∞  ∣ f ( e j  ) ∣ q ) q 1   ≤ ∥ f ∥  
f f f n ∈ N n \in \mathbb{N} n ∈ N 
∣ ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 1 q ∣ ≤ ∥ f ∥ ∥ y 1 e 1 + ⋯ + y n e n ∥ p 
\left| \left( \sum_{j=1}^{n} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} } \right| \le \| f \| \| y_{1} e_{1} + \dots + y_{n} e_ {n} \|_{p}
  ( j = 1 ∑ n  ∣ f ( e j  ) ∣ q ) q 1   ≤ ∥ f ∥∥ y 1  e 1  + ⋯ + y n  e n  ∥ p  
∥ y 1 e 1 + ⋯ + y n e n ∥ p p = 1 \displaystyle \| y_{1} e_{1} + \dots + y_{n} e_{n} \|_{p}^{p} = 1 ∥ y 1  e 1  + ⋯ + y n  e n  ∥ p p  = 1 
∣ ( ∑ j = 1 ∞ ∣ f ( e j ) ∣ q ) 1 q ∣ ≤ ∥ f ∥ 
\left| \left( \sum_{j=1}^{\infty} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} } \right| \le \| f \|
  ( j = 1 ∑ ∞  ∣ f ( e j  ) ∣ q ) q 1   ≤ ∥ f ∥ 
Part 2. ϕ \phi ϕ  
위의 Part 1.  에서 ∣ ϕ ( f ) ∣ = ∣ ( ∑ j = 1 ∞ ∣ f ( e j ) ∣ q ) 1 q ∣ ≤ ∥ f ∥ < ∞ \displaystyle \left| \phi (f) \right| = \left| \left( \sum_{j=1}^{\infty} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} } \right| \le \| f \| < \infty ∣ ϕ ( f ) ∣ =  ( j = 1 ∑ ∞  ∣ f ( e j  ) ∣ q ) q 1   ≤ ∥ f ∥ < ∞ ϕ ( f ) ∈ ℓ q \phi ( f ) \in \ell^{q} ϕ ( f ) ∈ ℓ q 
Part 3. ϕ \phi ϕ  
f , g ∈ ℓ p ∗ f , g \in {\ell^{p}}^{ \ast } f , g ∈ ℓ p ∗ λ ∈ C \lambda \in \mathbb{C} λ ∈ C 
ϕ ( λ f + g ) = ( ( λ f + g ) e 1 , …  ) = ( λ f ( e 1 ) + g ( e 1 ) , …  ) = ( λ f ( e 1 ) , …  ) + ( g ( e 1 ) , …  ) = λ ϕ ( f ) + ϕ ( g ) 
\begin{align*}
\phi ( \lambda f + g ) =& \left( ( \lambda f + g ) e_{1} , \dots \right)
\\ =& \left( \lambda f (e_{1}) + g (e_{1}) , \dots \right)
\\ =&\left( \lambda f (e_{1}) , \dots \right) + \left( g (e_{1}) , \dots \right)
\\ =& \lambda \phi (f) + \phi (g)
\end{align*}
 ϕ ( λ f + g ) = = = =  ( ( λ f + g ) e 1  , … ) ( λ f ( e 1  ) + g ( e 1  ) , … ) ( λ f ( e 1  ) , … ) + ( g ( e 1  ) , … ) λ ϕ ( f ) + ϕ ( g )  
Part 4. ϕ \phi ϕ  
f , g ∈ ℓ p ∗ f , g \in {\ell^{p}}^{ \ast } f , g ∈ ℓ p ∗ ϕ ( f ) = ϕ ( g ) \phi (f) = \phi (g) ϕ ( f ) = ϕ ( g ) j ∈ N j \in \mathbb{N} j ∈ N f ( e j ) = g ( e j ) f(e_{j} ) = g( e_{j} ) f ( e j  ) = g ( e j  ) ( x j ) ∈ ℓ q ( x_{j} ) \in \ell^{q} ( x j  ) ∈ ℓ q 
f ( ( x j ) ) = f ( lim  n → ∞ ( x 1 e 1 + ⋯ + x n e n ) ) 
f \left( ( x_{j} ) \right) = f \left( \lim_{n \to \infty} \left( x_{1} e_{1} + \dots + x_{n} e_{n} \right) \right)
 f ( ( x j  ) ) = f ( n → ∞ lim  ( x 1  e 1  + ⋯ + x n  e n  ) ) 
ϕ \phi ϕ 선형이므로 연속 이고
f ( lim  n → ∞ ( x 1 e 1 + ⋯ + x n e n ) ) = lim  n → ∞ f ( x 1 e 1 + ⋯ + x n e n ) = lim  n → ∞ ( x 1 f ( e 1 ) + ⋯ + x n f ( e n ) ) = lim  n → ∞ ( x 1 g ( e 1 ) + ⋯ + x n g ( e n ) ) = lim  n → ∞ g ( x 1 e 1 + ⋯ + x n e n ) = g ( lim  n → ∞ ( x 1 e 1 + ⋯ + x n e n ) ) = g ( ( x j ) ) 
\begin{align*}
f \left( \lim_{n \to \infty} \left( x_{1} e_{1} + \dots + x_{n} e_{n} \right) \right) =& \lim_{n \to \infty} f \left( x_{1} e_{1} + \dots + x_{n} e_{n} \right)
\\ =& \lim_{n \to \infty} \left( x_{1} f (e_{1} ) + \dots + x_{n} f(e_{n}) \right)
\\ =& \lim_{n \to \infty} \left( x_{1} g (e_{1} ) + \dots + x_{n} g (e_{n}) \right)
\\ =& \lim_{n \to \infty} g \left( x_{1} e_{1} + \dots + x_{n} e_{n} \right)
\\ =& g \left( \lim_{n \to \infty} \left( x_{1} e_{1} + \dots + x_{n} e_{n} \right) \right)
\\ =& g \left( ( x_{j} ) \right)
\end{align*}
 f ( n → ∞ lim  ( x 1  e 1  + ⋯ + x n  e n  ) ) = = = = = =  n → ∞ lim  f ( x 1  e 1  + ⋯ + x n  e n  ) n → ∞ lim  ( x 1  f ( e 1  ) + ⋯ + x n  f ( e n  ) ) n → ∞ lim  ( x 1  g ( e 1  ) + ⋯ + x n  g ( e n  ) ) n → ∞ lim  g ( x 1  e 1  + ⋯ + x n  e n  ) g ( n → ∞ lim  ( x 1  e 1  + ⋯ + x n  e n  ) ) g ( ( x j  ) )  
정리하면
ϕ ( f ) = ϕ ( g )   ⟹   f = g 
\phi (f) = \phi (g) \implies f = g
 ϕ ( f ) = ϕ ( g ) ⟹ f = g 
Part 5. ϕ \phi ϕ  
임의의 ( λ j ) ∈ ℓ q ( \lambda_{j} ) \in \ell^{q} ( λ j  ) ∈ ℓ q ϕ ( f 0 ) = ( λ j ) \phi ( f_{0} ) = ( \lambda_{j} ) ϕ ( f 0  ) = ( λ j  ) f 0 ∈ ℓ p ∗ f_{0} \in {\ell^{p}}^{ \ast } f 0  ∈ ℓ p ∗ f 0 : ℓ p → C f_{0} : \ell^{p} \to \mathbb{C} f 0  : ℓ p → C f 0 ( ( x j ) ) : = ∑ j = 1 ∞ x j λ j \displaystyle f_{0} \left( (x_{j} ) \right) : = \sum_{j=1}^{\infty} x_{j} \lambda_{j} f 0  ( ( x j  ) ) := j = 1 ∑ ∞  x j  λ j  ( x j ) , ( y j ) ∈ ℓ p ( x_{j} ) , ( y_{j} ) \in \ell^{p} ( x j  ) , ( y j  ) ∈ ℓ p 
f 0 ( λ ( x j ) + ( y j ) ) = f 0 ( ( λ x j + y j ) ) = ∑ j = 1 ∞ ( λ x j + y j ) λ j = λ ∑ j = 1 ∞ x j λ j + ∑ j = 1 ∞ y j λ j = λ f ( ( x j ) ) + f ( ( y j ) ) 
\begin{align*}
f_{0} \left( \lambda ( x_{j} ) + ( y_{j} ) \right) =& f_{0} \left( ( \lambda x_{j} + y_{j} ) \right)
\\ =& \sum_{j=1}^{\infty} ( \lambda x_{j} + y_{j} ) \lambda_{j}
\\ =& \lambda \sum_{j=1}^{\infty} x_{j} \lambda_{j} + \sum_{j=1}^{\infty} y_{j} \lambda_{j}
\\ =& \lambda f \left( (x_{j} ) \right) + f \left( (y_{j} ) \right)
\end{align*}
 f 0  ( λ ( x j  ) + ( y j  ) ) = = = =  f 0  ( ( λ x j  + y j  ) ) j = 1 ∑ ∞  ( λ x j  + y j  ) λ j  λ j = 1 ∑ ∞  x j  λ j  + j = 1 ∑ ∞  y j  λ j  λ f ( ( x j  ) ) + f ( ( y j  ) )  
이므로 f 0 f_{0} f 0  횔더 부등식 에 의해
∥ f 0 ∥ = sup  ∥ ( x j ) ∥ p = 1 ∣ ∑ j = 1 ∞ x j λ j ∣ ≤ sup  ∥ ( x j ) ∥ p = 1 ( ∑ j = 1 ∞ ∣ x j ∣ p ) 1 p ( ∑ j = 1 ∞ ∣ λ j ∣ q ) 1 q < ∞ 
\| f_{0} \| = \sup_{ \| (x_{j}) \|_{p } = 1 } \left| \sum_{j=1}^{\infty} x_{j} \lambda_{j} \right| \le \sup_{ \| (x_{j}) \|_{p } = 1 } \left( \sum_{j=1}^{\infty} | x_{j} |^{p} \right)^{{1} \over {p}} \left( \sum_{j=1}^{\infty} | \lambda_{j} |^{q} \right)^{{1} \over {q}} < \infty
 ∥ f 0  ∥ = ∥ ( x j  ) ∥ p  = 1 sup   j = 1 ∑ ∞  x j  λ j   ≤ ∥ ( x j  ) ∥ p  = 1 sup  ( j = 1 ∑ ∞  ∣ x j  ∣ p ) p 1  ( j = 1 ∑ ∞  ∣ λ j  ∣ q ) q 1  < ∞ 
이므로 f 0 f_{0} f 0  f 0 ∈ ℓ p ∗ f_{0} \in {\ell^{p}}^{ \ast } f 0  ∈ ℓ p ∗ f 0 f_{0} f 0  
ϕ ( f 0 ) = ( f 0 ( e 1 ) , f 0 ( e 2 ) , …  ) = ( ∑ j = 1 ∞ e 1 λ j , ∑ j = 1 ∞ e 2 λ j , …  ) = ( λ 1 , λ 2 , …  ) = ( λ j ) 
\phi (f_{0} ) = \left( f_{0} (e_{1}) , f_{0} (e_{2}) , \dots \right) = \left( \sum_{j=1}^{\infty} e_{1} \lambda_{j} , \sum_{j=1}^{\infty} e_{2} \lambda_{j} , \dots \right) = (\lambda_{1} , \lambda_{2} , \dots ) = (\lambda_{j})
 ϕ ( f 0  ) = ( f 0  ( e 1  ) , f 0  ( e 2  ) , … ) = ( j = 1 ∑ ∞  e 1  λ j  , j = 1 ∑ ∞  e 2  λ j  , … ) = ( λ 1  , λ 2  , … ) = ( λ j  ) 
를 만족시킨다.
Part 6. ϕ \phi ϕ  
∥ ϕ ( f ) ∥ q = ∥ f ∥ \| \phi (f) \|_{q} = \| f \| ∥ ϕ ( f ) ∥ q  = ∥ f ∥ 
∥ f ∥ = sup  ∥ ( x j ) ∥ p = 1 ∣ f ( ( x j ) ) ∣ = sup  ∥ ( x j ) ∥ p = 1 ∣ ∑ j = 1 ∞ ( x j ) f ( e j ) ∣ ≤ sup  ∥ ( x j ) ∥ p = 1 ∑ j = 1 ∞ ∣ ( x j ) ∣ ∣ f ( e j ) ∣ ≤ sup  ∥ ( x j ) ∥ p = 1 ( ∑ j = 1 ∞ ∣ x j ∣ p ) 1 p ( ∑ j = 1 ∞ ∣ f ( e j ) ∣ q ) 1 q = ( ∑ j = 1 ∞ ∣ f ( e j ) ∣ q ) 1 q = ∥ ϕ ( f ) ∥ q 
\begin{align*}
\| f \| =& \sup_{ \| (x_{j}) \|_{p } = 1 } \left| f((x_{j} )) \right|
\\ =& \sup_{ \| (x_{j}) \|_{p } = 1 } \left| \sum_{j=1}^{\infty} (x_{j} ) f(e_{j} ) \right|
\\ \le & \sup_{ \| (x_{j}) \|_{p } = 1 } \sum_{j=1}^{\infty} | (x_{j} ) | | f(e_{j} ) |
\le \sup_{ \| (x_{j}) \|_{p } = 1 } \left( \sum_{j=1}^{\infty} | x_{j} |^{p} \right)^{{1} \over {p}} \left( \sum_{j=1}^{\infty} | f ( e_{j} ) |^{q} \right)^{{1} \over {q}}
\\ =& \left( \sum_{j=1}^{\infty} | f ( e_{j} ) |^{q} \right)^{{1} \over {q}}
\\ =& \| \phi (f) \|_{q}
\end{align*}
 ∥ f ∥ = = ≤ = =  ∥ ( x j  ) ∥ p  = 1 sup  ∣ f (( x j  )) ∣ ∥ ( x j  ) ∥ p  = 1 sup   j = 1 ∑ ∞  ( x j  ) f ( e j  )  ∥ ( x j  ) ∥ p  = 1 sup  j = 1 ∑ ∞  ∣ ( x j  ) ∣∣ f ( e j  ) ∣ ≤ ∥ ( x j  ) ∥ p  = 1 sup  ( j = 1 ∑ ∞  ∣ x j  ∣ p ) p 1  ( j = 1 ∑ ∞  ∣ f ( e j  ) ∣ q ) q 1  ( j = 1 ∑ ∞  ∣ f ( e j  ) ∣ q ) q 1  ∥ ϕ ( f ) ∥ q   
그런데 Part 1.  에서 ∣ ( ∑ j = 1 ∞ ∣ f ( e j ) ∣ q ) 1 q ∣ ≤ ∥ f ∥ \displaystyle \left| \left( \sum_{j=1}^{\infty} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} } \right| \le \| f \|  ( j = 1 ∑ ∞  ∣ f ( e j  ) ∣ q ) q 1   ≤ ∥ f ∥ 
∥ f ∥ ≤ ∥ ϕ ( f ) ∥ q ≤ ∥ f ∥ 
\| f \| \le \| \phi (f) \|_{q} \le \| f \|
 ∥ f ∥ ≤ ∥ ϕ ( f ) ∥ q  ≤ ∥ f ∥ 
정리하면
∥ ϕ ( f ) ∥ q = ∥ f ∥ 
\| \phi (f) \|_{q} = \| f \|
 ∥ ϕ ( f ) ∥ q  = ∥ f ∥ 
위의 Part 2.  부터 Part 6.  까지를 정리하면 ϕ \phi ϕ 아이소메트리 임을 알 수 있다. 즉 1 p + 1 q = 1 \displaystyle {{1} \over {p}} + {{1} \over {q}} = 1 p 1  + q 1  = 1 ℓ p ∗ ≈ ℓ q {\ell^{p}}^{ \ast } \approx \ell^{q} ℓ p ∗ ≈ ℓ q 
Part 7. ℓ p ∗ ≈ ℓ q {\ell^{p}}^{ \ast } \approx \ell^{q} ℓ p ∗ ≈ ℓ q ℓ p ∗ ∗ ≈ ℓ q ∗ {\ell^{p}}^{\ast \ast} \approx {\ell^{q}}^{ \ast } ℓ p ∗∗ ≈ ℓ q ∗ 아이소메트리는 동치관계 고, 동치관계 의 추이성 에 의해
ℓ p ∗ ∗ ≈ ℓ p 
\ell_{p}^{\ast \ast} \approx \ell_{p}
 ℓ p ∗∗  ≈ ℓ p  
■