logo

지수 분포의 평균과 분산 📂확률분포론

지수 분포의 평균과 분산

공식

Xexp(λ)X \sim \exp ( \lambda)E(X)=1λVar(X)=1λ2 E(X) = {{ 1 } \over { \lambda }} \\ \Var (X) = {{ 1 } \over { \lambda^{2} }}

증명

전략: 지수 분포의 정의에서 직접 연역한다.

지수 분포의 정의: λ>0\lambda > 0 에 대해 다음과 같은 확률 밀도 함수를 가지는 연속 확률 분포 exp(λ)\exp ( \lambda)지수 분포라고 한다. f(x)=λeλx,x0 f(x) = \lambda e^{-\lambda x} \qquad , x \ge 0

평균

E(X)=0xλeλxdx E(X)=\int _{ 0 }^{ \infty }{ x\cdot \lambda { e } ^{ -\lambda x } }dx λx=t\lambda x=t 이라고 두면 λdx=dt\lambda dx=dt 이므로 0tet1λdt=1λet(t+1)0=1λ(0(1))=1λ \begin{align*} \int _{ 0 }^{ \infty }{ t { e }^{ -t } }\frac { 1 }{ \lambda }dt =& \frac { 1 }{ \lambda } { \left\lceil - { e }^{ -t }(t+1) \right\rceil } _{ 0 }^{ \infty } \\ =& \frac { 1 }{ \lambda }(0-(-1)) \\ =& \frac { 1 }{ \lambda } \end{align*}

분산

E(X2)=0x2λeλxdx=1λ20t2etdt=1λ2et(t2+2t+2)0=1λ2(0(2))=2λ2 \begin{align*} E({ X }^{ 2 }) =& \int _{ 0 }^{ \infty }{ { x }^{ 2 } }\lambda { e }^{ -\lambda x }dx \\ =& \frac { 1 }{ { \lambda }^{ 2 } }\int _{ 0 }^{ \infty }{ { t } ^{ 2 } } { e }^{ -t }dt \\ =& \frac { 1 }{ { \lambda }^{ 2 } } { \left\lceil - { e }^{ -t }( { t }^{ 2 }+2t+2) \right\rceil }_{ 0 }^{ \infty } \\ =& \frac { 1 }{ { \lambda }^{ 2 } }(0-(-2)) \\ =& \frac { 2 }{ { \lambda }^{ 2 } } \end{align*} 따라서 Var(X)=2λ2(1λ)2=1λ2 \Var (X)=\frac { 2 }{ { \lambda }^{ 2 } }- { \left( \frac { 1 }{ \lambda } \right) }^{ 2 }=\frac { 1 }{ { \lambda }^{ 2 } }