logo

선형대수학에서 플래그란? 📂선형대수

선형대수학에서 플래그란?

정의1 2

nn차원 벡터공간 VV부분공간들의 수열 {Wi}\left\{ W_{i} \right\}들이 다음의 식을 만족할 때, 이를 플래그flag라 한다.

{0}=W0W1W2Wk1Wk=V \left\{ \mathbf{0} \right\} = W_{0} \lneq W_{1} \lneq W_{2} \lneq \cdots \lneq W_{k-1} \lneq W_{k} = V

정의에 의해 다음이 성립한다.

0=dimV0<dimV1<dimV2<<dimVk1<dimVk=n 0 = \dim V_{0} \lt \dim V_{1} \lt \dim V_{2} \lt \cdots \lt \dim V_{k-1} \lt \dim V_{k} = n

설명

flags.jpg

플래그라고 명명된 이유는 수식을 딱 봤을 때 깃발을 세워놓은 것같이 생겨서이다.사진출처3

정의에 의해 자명하게도 knk \le n인데, dimVi=i\dim V_{i} = i이면(즉 k=nk=n) 컴플리트 플래그complete flag, 그렇지 않으면 파셜 플래그partial flag라고 한다.

di=dimVid_{i} = \dim V_{i}라고 할 때, 수열 {di}\left\{ d_{i} \right\}를 플래그의 시그니쳐signature라고 한다.

같이보기

필트레이션

A1A2An A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset \cdots 보편적으로 수학 전반에서는 위와 같이 형식적으로 네스티드 시퀀스Nested Sequence를 이루는 구조를 가졌을 때 필트레이션Filtration이라는 표현을 사용한다.