logo

미분기하학에서 가우스 공식 📂기하학

미분기하학에서 가우스 공식

정리1

x:UR3\mathbf{x} : U \to \R^{3}좌표조각사상이라 하자. (u1,u2)(u_{1}, u_{2})UU의 좌표라고 하자.

n\mathbf{n}단위 노멀, Lij=xij,nL_{ij} = \left\langle \mathbf{x}_{ij}, \mathbf{n} \right\rangle제2 기본 형식의 계수, Γijk=l=12xij,xlglk=xij,xlglk\Gamma_{ij}^{k} = \sum \limits_{l=1}^{2} \left\langle \mathbf{x}_{ij}, \mathbf{x}_{l} \right\rangle g^{lk} = \left\langle \mathbf{x}_{ij}, \mathbf{x}_{l} \right\rangle g^{lk}크리스토펠 심볼이라고 하자.

그러면 다음이 성립한다.

(a) 가우스 공식Gauss’s formulas:

xij=Lijn+k=12Γijkxk \mathbf{x}_{ij} = L_{ij} \mathbf{n} + \sum \limits_{k=1}^{2} \Gamma_{ij}^{k} \mathbf{x}_{k}

(b) 임의의 단위 속력 곡선 γ(s)=x(γ1(s),γ2(s))\boldsymbol{\gamma}(s) = \mathbf{x}\left( \gamma^{1}(s), \gamma^{2}(s) \right)에 대해서,

κn=i=12j=12Lij(γi)(γj) \kappa_{n} = \sum \limits_{i=1}^{2} \sum \limits_{j=1}^{2} L_{ij} (\gamma^{i})^{\prime} (\gamma^{j})^{\prime}

그리고

κgS=k=12[uk+i,j=12Γijk(γi)(γj)]xk \kappa_{g}\mathbf{S} = \sum \limits_{k=1}^{2} \left[ u_{k}^{\prime \prime} + \sum \limits_{i,j=1}^{2} \Gamma_{ij}^{k}(\gamma^{i})^{\prime}(\gamma^{j})^{\prime} \right] \mathbf{x}_{k}

이때 κn\kappa_{n}법곡률, κg\kappa_{g}측지곡률, S=n×T\mathbf{S} = \mathbf{n} \times \mathbf{T}이다.

설명

사실 (a)는 그 자체가 LijL_{ij}Γijk\Gamma_{ij}^{k}의 정의이다.

(a)의 결과로부터 다음의 식을 얻는다.

xij,xl=k=12Γijkgkl \left\langle \mathbf{x}_{ij}, \mathbf{x}_{l} \right\rangle = \sum \limits_{k=1}^{2}\Gamma_{ij}^{k}g_{kl}

이를 제1 크리스토펠 심볼이라고 한다.

증명

(a)

단위 노멀은 탄젠트 공간에 수직하고, {x1,x2}\left\{ \mathbf{x}_{1}, \mathbf{x}_{2} \right\}는 탄젠트 공간의 기저이므로 {n,x1,x2}\left\{ \mathbf{n}, \mathbf{x}_{1}, \mathbf{x}_{2} \right\}R3\R^{3}의 기저가 된다. 그러면 R3\R^{3}의 모든 벡터는 이들의 선형결합으로 나타낼 수 있다. 이제 xij\mathbf{x}_{ij}를 다음과 같이 나타내자.

xij=aijn+bij1x1+bij2x2 \mathbf{x}_{ij} = a_{ij}\mathbf{n} + {b_{ij}}^{1}\mathbf{x}_{1} + {b_{ij}}^{2}\mathbf{x}_{2}

따라서, xi,n=0\left\langle \mathbf{x}_{i}, \mathbf{n} \right\rangle=0 이므로, 제2기본형식계수의 정의에 의해

Lij=xij,n=aijn+bij1x1+bij2x2,n=aij L_{ij} = \left\langle \mathbf{x}_{ij}, \mathbf{n} \right\rangle = \left\langle a_{ij}\mathbf{n} + {b_{ij}}^{1}\mathbf{x}_{1} + {b_{ij}}^{2}\mathbf{x}_{2}, \mathbf{n} \right\rangle = a_{ij}

또한 리만 메트릭의 계수는 gij:=xi,xjg_{ij} := \left\langle \mathbf{x}_{i}, \mathbf{x}_{j} \right\rangle와 같이 정의되므로,

xij,xl= aijn+bij1x1+bij2x2,xl=bij1x1,xl+bij2x2,xl=bij1g1l+bij2g2l=m=12bijmgml=bijmgml(Einstein notation) \begin{align*} \left\langle \mathbf{x}_{ij}, \mathbf{x}_{l} \right\rangle =&\ \left\langle a_{ij}\mathbf{n} + {b_{ij}}^{1}\mathbf{x}_{1} + {b_{ij}}^{2}\mathbf{x}_{2}, \mathbf{x}_{l} \right\rangle \\ &= {b_{ij}}^{1} \left\langle \mathbf{x}_{1}, \mathbf{x}_{l} \right\rangle + {b_{ij}}^{2} \left\langle \mathbf{x}_{2}, \mathbf{x}_{l} \right\rangle \\ &= {b_{ij}}^{1} g_{1l} + {b_{ij}}^{2} g_{2l} \\ &= \sum \limits_{m=1}^{2} {b_{ij}}^{m} g_{ml} \\ &= {b_{ij}}^{m} g_{ml} \quad (\text{Einstein notation}) \end{align*}

따라서, [glk][g^{lk}][gij][g_{ij}]의 역행렬이므로, 다음의 식이 성립한다.

xij,xlglk=m=12bijmgmlglk \left\langle \mathbf{x}_{ij}, \mathbf{x}_{l} \right\rangle g^{lk} = \sum \limits_{m=1}^{2} {b_{ij}}^{m} g_{ml}g^{lk}

좌변을 모든 ll에 대해서 더하면 크리스토펠 심볼이다. 리만 메트릭에 대해서 gikgkj=δijg_{ik}g^{kj} = {\delta_{i}}^{j}이 성립하므로,

Γijk=l=12xij,xlglk=l=12m=12bijmgmlglk=m=12bijmδmk=bijk \Gamma_{ij}^{k} = \sum \limits_{l=1}^{2} \left\langle \mathbf{x}_{ij}, \mathbf{x}_{l} \right\rangle g^{lk} = \sum \limits_{l=1}^{2} \sum \limits_{m=1}^{2} {b_{ij}}^{m} g_{ml}g^{lk} = \sum \limits_{m=1}^{2} {b_{ij}}^{m} {\delta_{m}}^{k} = {b_{ij}}^{k}

그러므로

xij= aijn+bij1x1+bij2x2= Lijn+Γij1x1+Γij2x2= Lijn+k=12Γijkxk \begin{align*} \mathbf{x}_{ij} =&\ a_{ij}\mathbf{n} + {b_{ij}}^{1}\mathbf{x}_{1} + {b_{ij}}^{2}\mathbf{x}_{2} \\ =&\ L_{ij} \mathbf{n} + {\Gamma_{ij}}^{1} \mathbf{x}_{1} + {\Gamma_{ij}}^{2} \mathbf{x}_{2} \\ =&\ L_{ij} \mathbf{n} + \sum \limits_{k=1}^{2} \Gamma_{ij}^{k} \mathbf{x}_{k} \end{align*}

(b)

  • Part 1. γ\boldsymbol{\gamma}^{\prime \prime}계산

    γ(s)=x(γ1(s),γ2(s))\boldsymbol{\gamma}(s) = \mathbf{x}\left( \gamma^{1}(s), \gamma^{2}(s) \right)탄젠트 벡터를 계산하면 다음과 같다.

    T(s)= dγds= ddsx(γ1,γ2)= xγ1dγ1ds+xγ2dγ2dsby \href= x1(γ1)+x2(γ2)= i=12xi(γi)= xi(γi) \begin{align*} T(s) =&\ \dfrac{d \boldsymbol{\gamma}}{d s} \\ =&\ \dfrac{d}{ds} \mathbf{x}(\gamma^{1}, \gamma^{2}) \\ =&\ \dfrac{\partial \mathbf{x}}{\partial \gamma^{1}}\dfrac{d \gamma^{1}}{ds} + \dfrac{\partial \mathbf{x}}{\partial \gamma^{2}}\dfrac{d \gamma^{2}}{ds}& \text{by } \href{https://freshrimpsushi.github.io/posts/derivative-of-three-dimentional-scalar-vector-function}{\text{chain rule}} \\ =&\ \mathbf{x}_{1}(\gamma^{1})^{\prime} + \mathbf{x}_{2}(\gamma^{2})^{\prime} \\ =&\ \sum \limits_{i=1}^{2}\mathbf{x}_{i}(\gamma^{i})^{\prime} \\ =&\ \mathbf{x}_{i}(\gamma^{i})^{\prime} \end{align*}

    마지막 등호에서 아인슈타인 표기법을 사용했다. 가속도를 계산해보자. 아인슈타인 노테이션과 미분 암산에 익숙한 사람이라면 다음과 같이 한방 컷으로 계산할 수 있다.

    γ=dds(xi(γi))=xij(γj)(γi)+xi(γi)=i=12(j=12xij(γj)(γi)+xi(γi)) \boldsymbol{\gamma} ^{\prime \prime} = \dfrac{d}{ds}\left( \mathbf{x}_{i}(\gamma^{i})^{\prime} \right) = \mathbf{x}_{ij}(\gamma^{j})^{\prime}(\gamma^{i})^{\prime} + \mathbf{x}_{i}(\gamma^{i})^{\prime \prime} = \sum \limits_{i=1}^{2}\left( \sum\limits_{j=1}^{2}\mathbf{x}_{ij}(\gamma^{j})^{\prime}(\gamma^{i})^{\prime} + \mathbf{x}_{i}(\gamma^{i})^{\prime \prime} \right)

    아인슈타인 노테이션에 익숙하지 않은 사람을 위해 계산 과정을 최대한 자세히 적으면 다음과 같다.

    γ= dds(x1(γ1)+x2(γ2))= dds(x1(γ1))+dds(x2(γ2))= dds(x1)(γ1)+x1dds((γ1))+dds(x2)(γ2)+x2dds((γ2))= (x1γ1dγ1ds+x1γ2dγ2ds)(γ1)+x1(γ1)+(x2γ1dγ1ds+x2γ2dγ2ds)(γ2)+x2(γ2)= (x11(γ1)+x12(γ2))(γ1)+x1(γ1)+(x21(γ1)+x22(γ2))(γ2)+x2(γ2)= x11(γ1)(γ1)+x12(γ2)(γ1)+x1(γ1)+x21(γ1)(γ2)+x22(γ2)(γ2)+x2(γ2)= (x11(γ1)(γ1)+x12(γ2)(γ1)+x21(γ1)(γ2)+x22(γ2)(γ2))+x1(γ1)+x2(γ2)= j=12(x1j(γj)(γ1)+x2j(γj)(γ2))+x1u1+x2(γ2)= i=12(j=12xij(γj)(γi)+xi(γi))= xij(γj)(γi)+xi(γi) \begin{align*} \boldsymbol{\gamma}^{\prime \prime} =&\ \dfrac{d}{ds} \left( \mathbf{x}_{1}(\gamma^{1})^{\prime} + \mathbf{x}_{2}(\gamma^{2})^{\prime} \right) \\ =&\ \dfrac{d}{ds} \left( \mathbf{x}_{1}(\gamma^{1})^{\prime} \right) +\dfrac{d}{ds} \left( \mathbf{x}_{2}(\gamma^{2})^{\prime} \right) \\ =&\ \dfrac{d}{ds} \left( \mathbf{x}_{1} \right) (\gamma^{1})^{\prime} +\mathbf{x}_{1} \dfrac{d}{ds} \left( (\gamma^{1})^{\prime} \right) + \dfrac{d}{ds} \left( \mathbf{x}_{2} \right) (\gamma^{2})^{\prime} +\mathbf{x}_{2} \dfrac{d}{ds} \left( (\gamma^{2})^{\prime} \right) \\ =&\ \left( \dfrac{\partial \mathbf{x}_{1}}{\partial \gamma^{1}}\dfrac{d \gamma^{1}}{ds} + \dfrac{\partial \mathbf{x}_{1}}{\partial \gamma^{2}}\dfrac{d \gamma^{2}}{ds} \right) (\gamma^{1})^{\prime} + \mathbf{x}_{1} (\gamma^{1})^{\prime \prime} + \left( \dfrac{\partial \mathbf{x}_{2}}{\partial \gamma^{1}}\dfrac{d \gamma^{1}}{ds} + \dfrac{\partial \mathbf{x}_{2}}{\partial \gamma^{2}}\dfrac{d \gamma^{2}}{ds} \right) (\gamma^{2})^{\prime} + \mathbf{x}_{2} (\gamma^{2})^{\prime \prime} \\ =&\ \left( \mathbf{x}_{11}(\gamma^{1})^{\prime} + \mathbf{x}_{12}(\gamma^{2})^{\prime} \right)(\gamma^{1})^{\prime} + \mathbf{x}_{1} (\gamma^{1})^{\prime \prime} + \left( \mathbf{x}_{21}(\gamma^{1})^{\prime} + \mathbf{x}_{22}(\gamma^{2})^{\prime} \right)(\gamma^{2})^{\prime} + \mathbf{x}_{2} (\gamma^{2})^{\prime \prime} \\ =&\ \mathbf{x}_{11}(\gamma^{1})^{\prime}(\gamma^{1})^{\prime} + \mathbf{x}_{12}(\gamma^{2})^{\prime}(\gamma^{1})^{\prime} + \mathbf{x}_{1} (\gamma^{1})^{\prime \prime} + \mathbf{x}_{21}(\gamma^{1})^{\prime}(\gamma^{2})^{\prime} + \mathbf{x}_{22}(\gamma^{2})^{\prime}(\gamma^{2})^{\prime} + \mathbf{x}_{2} (\gamma^{2})^{\prime \prime} \\ =&\ \left( \mathbf{x}_{11}(\gamma^{1})^{\prime}(\gamma^{1})^{\prime} + \mathbf{x}_{12}(\gamma^{2})^{\prime}(\gamma^{1})^{\prime} + \mathbf{x}_{21}(\gamma^{1})^{\prime}(\gamma^{2})^{\prime} + \mathbf{x}_{22}(\gamma^{2})^{\prime}(\gamma^{2})^{\prime} \right) + \mathbf{x}_{1} (\gamma^{1})^{\prime \prime} + \mathbf{x}_{2} (\gamma^{2})^{\prime \prime} \\ =&\ \sum \limits_{j=1}^{2}\left( \mathbf{x}_{1j}(\gamma^{j})^{\prime}(\gamma^{1})^{\prime} + \mathbf{x}_{2j}(\gamma^{j})^{\prime}(\gamma^{2})^{\prime} \right) + \mathbf{x}_{1} u_{1}^{\prime \prime} + \mathbf{x}_{2} (\gamma^{2})^{\prime \prime} \\ =&\ \sum \limits_{i=1}^{2} \left(\sum \limits_{j=1}^{2} \mathbf{x}_{ij}(\gamma^{j})^{\prime}(\gamma^{i})^{\prime} + \mathbf{x}_{i} (\gamma^{i})^{\prime \prime} \right) \\ =&\ \mathbf{x}_{ij}(\gamma^{j})^{\prime}(\gamma^{i})^{\prime} + \mathbf{x}_{i} (\gamma^{i})^{\prime \prime} \end{align*}

  • Part 2.

    γ\boldsymbol{\gamma}^{\prime \prime}에 가우스 공식 (a)를 대입하면,

    γ(s)=i=12j=12xij(γi)(γj)+k=12xk(γk)=i=12j=12(Lijn+k=12Γijkxk)(γi)(γj)+k=12xk(γk)=i=12j=12Lij(γi)(γj)n+k=12((γk)+i=12j=12Γijk(γi)(γj))xk \begin{align*} \boldsymbol{\gamma}^{\prime \prime} (s) &= \sum \limits_{i=1}^{2} \sum \limits_{j=1}^{2} \mathbf{x}_{ij} (\gamma^{i})^{\prime} (\gamma^{j})^{\prime} + \sum \limits_{k=1}^{2} \mathbf{x}_{k} (\gamma^{k})^{\prime \prime} \\ &= \sum \limits_{i=1}^{2} \sum \limits_{j=1}^{2} \left( L_{ij} \mathbf{n} + \sum \limits_{k=1}^{2} \Gamma_{ij}^{k} \mathbf{x}_{k} \right) (\gamma^{i})^{\prime} (\gamma^{j})^{\prime} + \sum \limits_{k=1}^{2} \mathbf{x}_{k} (\gamma^{k})^{\prime \prime} \\ &= \sum \limits_{i=1}^{2} \sum \limits_{j=1}^{2} L_{ij} (\gamma^{i})^{\prime} (\gamma^{j})^{\prime} \mathbf{n} + \sum \limits_{k=1}^{2}\left( (\gamma^{k})^{\prime \prime} + \sum \limits_{i=1}^{2} \sum \limits_{j=1}^{2} \Gamma_{ij}^{k} (\gamma^{i})^{\prime} (\gamma^{j})^{\prime} \right)\mathbf{x}_{k} \end{align*}

    그런데 γ=κnn+κgS\boldsymbol{\gamma}^{\prime \prime} = \kappa_{n}\mathbf{n} + \kappa_{g}\mathbf{S}와 같이 표현되므로

    κn=i=12j=12Lij(γi)(γj) \kappa_{n} = \sum \limits_{i=1}^{2} \sum \limits_{j=1}^{2} L_{ij} (\gamma^{i})^{\prime} (\gamma^{j})^{\prime}

    κgS=k=12((γk)+i=12j=12Γijk(γi)(γj))xk \kappa_{g}\mathbf{S} = \sum \limits_{k=1}^{2}\left( (\gamma^{k})^{\prime \prime} + \sum \limits_{i=1}^{2} \sum \limits_{j=1}^{2} \Gamma_{ij}^{k} (\gamma^{i})^{\prime} (\gamma^{j})^{\prime} \right)\mathbf{x}_{k}


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p104-105 ↩︎