모평균에 대한 소표본 가설검정
가설검정 1
모집단의 분포가 정규분포 $N \left( \mu , \sigma^{2} \right)$ 을 따르지만 모분산 $\sigma^{2}$ 는 모른다고 가정하자. 표본이 $n < 30$ 개 뿐인 소표본인 경우, 그 모평균의 후보 $\mu_{0}$ 에 대한 가설검정은 다음과 같다.
- $H_{0}$: $\mu = \mu_{0}$ 이다. 즉, 모평균은 $\mu_{0}$ 이다.
- $H_{1}$: $\mu \ne \mu_{0}$ 이다. 즉, 모평균은 $\mu_{0}$ 이 아니다.
검정통계량
검정통계량은 표본표준편차 $s$ 를 써서 다음과 같다. $$ t = {{ \overline{X} - \mu_{0} } \over { s / \sqrt{n} }} $$
설명
본질적으로 모평균에 대한 대표본 가설검정과 다르지 않은데, 소표본이어도 쓸 수 있는 대신 모집단의 정규성이 가정되어야한다. 다행스럽게도 t-분포는 샘플에 크게 영향을 받지 않으며 그에 따라 통계량 $t$ 를 로버스트robust하다고 말하는데, 수리적인 유도과정과 별개로 실질적으로는 어느정도 모집단의 정규성이 결여되어도 유의미할 정도로 변화가 크지는 않다.
유도
스튜던트의 정리: 확률 변수 $X_{1} , \cdots , X_{n}$ 들이 iid로 정규분포 $N\left( \mu,\sigma^{2} \right)$ 를 따른다고 하면
- (a): $$ \overline{X} \sim N\left( \mu , { {\sigma^2} \over {n} } \right) $$
- (b): $$ \overline{X} \perp S^2 $$
- (c): $$ (n-1) { {S^2} \over {\sigma^2} } \sim \chi^2 (n-1) $$
- (d): $$ T = { {\overline{X} - \mu } \over {S / \sqrt{n}} } \sim t(n-1) $$
스튜던트의 정리에 따라 검정통계량 $t$ 는 정확히 자유도 $(n-1)$ 의 t-분포를 따른다. 확률변수 $Y$ 가 t-분포 $t(n-1)$ 을 따른다고 할 때, 유의수준 $\alpha$ 에 대해 $P \left( Y \ge t_{\alpha} \right) = \alpha$ 를 만족시키는 $t_{\alpha}$ 에 대해 $H_{0}$ 가 기각된다는 것은 다음과 동치다. $$ \left| t \right| \ge t_{\alpha} $$ 이는 귀무가설에 따라 $\mu = \mu_{0}$ 이라고 믿기엔 $\overline{X}$ 이 $\mu_{0}$ 에서 너무 멀리 떨어져있다는 의미가 된다.
■
Mendenhall. (2012). Introduction to Probability and Statistics (13th Edition): p399. ↩︎