logo

델타-컴플렉스의 정의 📂위상데이터분석

델타-컴플렉스의 정의

정의 1

심플렉스의 정의:

  1. 아핀독립v0,v1,,vnRn+1v_{0}, v_{1} , \cdots , v_{n} \in \mathbb{R}^{n+1}컨벡스 헐nn-심플렉스nn-simplex Δn\Delta^{n} 라 하고, 벡터 vkv_{k} 들을 꼭짓점vertex이라 부른다. 수식적으로는 다음과 같다. Δn:={ktkvk:vkRn+1,tk0,ktk=1} \Delta^{n} := \left\{ \sum_{k} t_{k} v_{k} : v_{k} \in \mathbb{R}^{n+1} , t_{k} \ge 0 , \sum_{k} t_{k} = 1 \right\}
  2. Δn\Delta^{n} 에서 하나의 꼭짓점이 제거되어서 만들어지는 n1n-1-심플렉스 Δn1\Delta^{n-1} 들을 Δn\Delta^{n}페이스face라 한다. Δn\Delta^{n} 의 모든 페이스들의 합집합Δn\Delta^{n}바운더리boundary라 하고 Δn\partial \Delta^{n} 로 나타낸다.
  3. 심플렉스의 내부 (Δn):=ΔnΔn\left( \Delta^{n} \right)^{\circ} := \Delta^{n} \setminus \partial \Delta^{n}오픈 심플렉스open Simplex라 부른다.

위상공간 XX 상에서의 Δ\Delta-컴플렉스 구조Δ\Delta-Complex Structure인덱스 α\alpha 에 종속된 n:=n(α)n := n(\alpha) 를 가지고 다음 세 조건을 만족하는 사상 σα:ΔnX\sigma_{\alpha} : \Delta^{n} \to X 들을 모아놓은 집합이다.

  • (i): σα\sigma_{\alpha} 의 오픈 심플렉스 (Δn)\left( \Delta^{n} \right)^{\circ} 에서의 제한함수 σα(Δn)\sigma_{\alpha} | \left( \Delta^{n} \right)^{\circ}단사고, XX 의 점 각각은 σα(Δn)\sigma_{\alpha} | \left( \Delta^{n} \right)^{\circ} 의 이미지 중 정확히 하나에 포함된다.
  • (ii): σα\sigma_{\alpha}Δn\Delta^{n} 중 하나의 페이스에서의 제한함수σβ:Δn1X\sigma_{\beta} : \Delta^{n-1} \to X 중 하나다.
  • (iii) 연속성: 모든 σγ\sigma_{\gamma} 들은 연속 함수여야한다. 다시 말해, AXA \subset XXX 에서 개집합이라는 것은 각각의 σα\sigma_{\alpha} 의 정의역 Δn\Delta^{n} 에서 σγ1(A)\sigma_{\gamma}^{-1} (A)개집합이라는 것과 동치다.

설명

주의사항

헷갈리지 말아야할 점은 위의 진술로 정의되는 것이 정확히 컴플렉스가 아니라 컴플렉스 구조라 했고, 그 조차도 “사상을 모아놓은 집합"일 뿐이라는 것이다. 대수학이나 위상수학 없이 달랑 이 집합만을 가지고 있어서는 아무것도 할 수 없으며, 컴플렉스의 정의에서 말하는 교집합 σ1σ2\sigma_{1} \cap \sigma_{2} 같은 것도 생각할 수 없다. 물론 교집합을 생각할 수 없는 대신 조건 (ii)가 그 역할을 하기 때문에 개념적으로 이를 컴플렉스라 부르는 것엔 문제가 없지만, 엄밀하게 따져야 할 때는 따질 수 있어야 한다.

대수위상

우리는 이렇게 만들어지는 함수들 그 자체를 일종의 문자로 보는 것 같은 프리 그룹들로 심플리셜 호몰로지 그룹을 만들고 탐구할 것이다. 여기까지 가고나면 딱히 심플렉스 Δn\Delta^{n} 나 공간 XX 같은 건 기억도 나지 않게 될 테지만, 반대로 그렇기 때문에 한 번은 똑바로 공부를 해둬야한다.

예시: 토러스

글만 읽고는 무척 이해하기 어려운 게 정상이다. 가장 간단한 예시로 꼽히는 토러스 X=TX = T 를 살펴보자.

구성

사실 토러스를 만드는 데 있어서는 심플렉스컴플렉스, 즉 심플리셜 컴플렉스까지는 필요없고 그냥 사각형 S1×S1S^{1} \times S^{1} 으로 충분하지만, Δ\Delta-컴플렉스 구조를 갖추고 이에 대한 의미있는 대수적 탐구를 위해서는 이후 설명할 66 개의 사상map이 필요하다.

20220118_105810.png

토러스를 위에서 바라본 투영도다. σa\sigma_{a}, σb\sigma_{b}, σv\sigma_{v} 는 토러스를 만드는 나이브한 방법에서 일종의 ‘뼈대’ 역할을 하는 사상들이 된다. σb\sigma_{b} 는 사각형을 말아서 원통으로 만들고, σa\sigma_{a} 는 그 원통의 양 끝을 이어붙여서 도넛을 만든다. 이 때 사각형의 꼭짓점은 정확히 한 지점으로 모여야하는데, σv\sigma_{v} 가 그 역할을 한다.

20220118_105816.png

토러스를 옆에서 바라본 투영도다. σU\sigma_{U}, σL\sigma_{L} 는 뼈대 사이를 채우는 ‘면’이라고 할 수 있는 부분을 매핑해주고 있다. 거듭 강조하지만 σc\sigma_{c} 는 토러스만을 생각했을 때 반드시 필요하지 않고 사각형을 두 삼각형의 합집합으로 보았을 때 그 경계를 담당하는 사상이 된다.

정의와의 비교

정의에 입각해서 토러스 T2T^{2}Δ\Delta-컴플렉스 구조는 다름 아닌 사상들의 집합 {σU,σL,σa,σb,σc,σv} \left\{ \sigma_{U}, \sigma_{L}, \sigma_{a}, \sigma_{b}, \sigma_{c}, \sigma_{v} \right\} 이다. 22-심플리셜 컴플렉스까지 생각했으니 α\alpha 에 종속된 nnn=0,1,2n = 0,1,2 까지만 생각하면 된다.

  • 조건 (iii) 연속성은 직관으로 충분히 이해할 수 있을 것이다.
  • α=L,U\alpha = L, U 에 대한 n=n(α)n = n(\alpha)22 다. 이들은 사각형 S1×S1S^{1} \times S^{1} 의 면이라고 부를 수 있을만한 U,LU^{\circ}, L^{\circ} 의 점들을 빠짐 없이 XX 로 보내준다.
  • U,LU,L 의 페이스는 다름아닌 선분 aa, bb, cc 고 이에 대응되는 n=(β)n = (\beta)11 이다. 이들은 U,LU^{\circ}, L^{\circ} 를 감싸는 선분들의 끝점을 빼고 XX 로 보내준다. 조건 (ii)가 이런 방식으로 만족된다.
  • 마지막으로 n=0n = 0 일 때 00-심플렉스인 점 vvaa, bb, cc 의 페이스고 σv\sigma_{v} 에 의해 XX 의 남은 마지막 점으로 간다. 지금까지의 논의에 따르면 XX 의 점들 각각은 여섯 개의 사상들 중 정확히 하나의 이미지에 속하므로, 조건 (i)이 만족되는 것을 확인할 수 있다.

  1. Hatcher. (2002). Algebraic Topology: p103. ↩︎