구면 좌표계에서의 슈뢰딩거 방정식
📂양자역학 구면 좌표계에서의 슈뢰딩거 방정식 방정식 구 좌표계 에서 슈뢰딩거 방정식 은 다음과 같다.
− ℏ 2 2 M [ 1 r 2 ∂ ∂ r ( r 2 ∂ ψ ∂ r ) + 1 r 2 sin θ ∂ ∂ θ ( sin θ ∂ ψ ∂ θ ) + 1 r 2 sin 2 θ ∂ 2 ψ ∂ 2 ϕ ] + V ψ = E ψ (1)
-\frac{\hbar^{2}}{2M}\left[\frac{1}{r^2}\frac{\partial}{\partial r} \left( r^2\frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left( \sin\theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 \psi}{\partial^2 \phi} \right]+V\psi=E\psi \tag{1}
− 2 M ℏ 2 [ r 2 1 ∂ r ∂ ( r 2 ∂ r ∂ ψ ) + r 2 sin θ 1 ∂ θ ∂ ( sin θ ∂ θ ∂ ψ ) + r 2 sin 2 θ 1 ∂ 2 ϕ ∂ 2 ψ ] + V ψ = E ψ ( 1 )
설명 3차원에서 시간에 무관한 슈뢰딩거 방정식 은 다음과 같다.
− ℏ 2 2 M ∇ 2 ψ + V ψ = E ψ
-\frac{\hbar^{2}}{2M}\nabla^{2}\psi+V\psi=E\psi
− 2 M ℏ 2 ∇ 2 ψ + V ψ = E ψ
여기서 M M M 은 입자의 질량이다. 퍼텐셜 이 V = V ( r ) V = V(r) V = V ( r ) 과 같이 원점과의 거리에만 의존한다면 구 좌표계 로 문제를 푸는 것이 좋다.
구 좌표계에서의 라플라시안
∇ 2 f = 1 r 2 ∂ ∂ r ( r 2 ∂ f ∂ r ) + 1 r 2 sin θ ∂ ∂ θ ( sin θ ∂ f ∂ θ ) + 1 r 2 sin 2 θ ∂ 2 f ∂ ϕ 2
\nabla ^{2}f = \frac{1}{r^{2}} \frac{ \partial }{ \partial r }\left(r^{2} \frac{ \partial f}{ \partial r} \right) + \frac{1}{r^{2}\sin\theta}\frac{ \partial }{ \partial \theta }\left( \sin \theta \frac{ \partial f}{ \partial \theta} \right)+\frac{1}{r^{2}\sin^{2}\theta} \frac{\partial ^{2} f}{\partial \phi^{2} }
∇ 2 f = r 2 1 ∂ r ∂ ( r 2 ∂ r ∂ f ) + r 2 sin θ 1 ∂ θ ∂ ( sin θ ∂ θ ∂ f ) + r 2 sin 2 θ 1 ∂ ϕ 2 ∂ 2 f
구 좌표계에서의 라플라시안이 위와 같으므로, 슈뢰딩거 방정식은 다음과 같다.
− ℏ 2 2 M [ 1 r 2 ∂ ∂ r ( r 2 ∂ ψ ∂ r ) + 1 r 2 sin θ ∂ ∂ θ ( sin θ ∂ ψ ∂ θ ) + 1 r 2 sin 2 θ ∂ 2 ψ ∂ 2 ϕ ] + V ψ = E ψ (1)
-\frac{\hbar^{2}}{2M}\left[\frac{1}{r^2}\frac{\partial}{\partial r} \left( r^2\frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left( \sin\theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 \psi}{\partial^2 \phi} \right] + V\psi = E\psi \tag{1}
− 2 M ℏ 2 [ r 2 1 ∂ r ∂ ( r 2 ∂ r ∂ ψ ) + r 2 sin θ 1 ∂ θ ∂ ( sin θ ∂ θ ∂ ψ ) + r 2 sin 2 θ 1 ∂ 2 ϕ ∂ 2 ψ ] + V ψ = E ψ ( 1 )
파동함수 ψ \psi ψ 가 아래와 같이 변수분리 가능 하다고 하자.
ψ ( r , θ , ϕ ) = R ( r ) Θ ( θ ) Φ ( ϕ )
\psi (r,\theta,\phi) = R(r) \Theta(\theta) \Phi( \phi)
ψ ( r , θ , ϕ ) = R ( r ) Θ ( θ ) Φ ( ϕ )
그러면 식 ( 1 ) (1) ( 1 ) 은 다음과 같다.
− ℏ 2 2 M [ Θ Φ r 2 d d r ( r 2 d R d r ) + R Φ r 2 sin θ d d θ ( sin θ d Θ d θ ) + R Θ r 2 sin 2 θ d 2 Φ d 2 ϕ ] + V R Θ Φ = E R Θ Φ
-\frac{\hbar^{2}}{2M}\left[\frac{\Theta \Phi}{r^2}\frac{d}{d r} \left( r^2\frac{d R}{d r} \right) + \frac{R \Phi}{r^2\sin\theta}\frac{d}{d\theta}\left( \sin\theta \frac{d \Theta}{d \theta} \right) + \frac{R \Theta}{r^2\sin^2\theta}\frac{d^2 \Phi}{d^2 \phi} \right]+VR\Theta \Phi=ER\Theta \Phi
− 2 M ℏ 2 [ r 2 ΘΦ d r d ( r 2 d r d R ) + r 2 sin θ R Φ d θ d ( sin θ d θ d Θ ) + r 2 sin 2 θ R Θ d 2 ϕ d 2 Φ ] + V R ΘΦ = ER ΘΦ
우변의 항을 좌변으로 이항하고, 양변에 − 2 M r 2 ℏ 2 1 R Θ Φ -\dfrac{2Mr^{2}}{\hbar ^{2}}\dfrac{1}{R\Theta \Phi} − ℏ 2 2 M r 2 R ΘΦ 1 를 곱해서 정리하면 아래와 같다.
[ 1 R d d r ( r 2 d R d r ) − 2 M r 2 ℏ 2 ( V ( r ) − E ) ] + [ 1 Θ sin θ d d θ ( sin θ d Θ d θ ) + 1 Φ sin 2 θ d 2 Φ d 2 ϕ ] = 0
\left[ \frac{1}{R}\frac{d}{d r} \left( r^2\frac{d R}{d r} \right) -\frac{2Mr^{2}}{\hbar ^{2}}(V(r)-E) \right]+\left[ \frac{1}{\Theta \sin\theta}\frac{d}{d\theta}\left( \sin\theta \frac{d \Theta}{d \theta} \right) + \frac{1}{\Phi\sin^2\theta}\frac{d^2 \Phi}{d^2 \phi} \right]=0
[ R 1 d r d ( r 2 d r d R ) − ℏ 2 2 M r 2 ( V ( r ) − E ) ] + [ Θ sin θ 1 d θ d ( sin θ d θ d Θ ) + Φ sin 2 θ 1 d 2 ϕ d 2 Φ ] = 0
퍼텐셜항과 상수가 더 추가됐지만 기본적으로 구면좌표계에 대한 라플라스 방정식을 푸는 것 과 큰 틀은 같다. 첫번째 각괄호로 둘러쌓인 항은 오로지 변수 r r r 에 대한 항이고 두번째 항은 변수 θ \theta θ , ϕ \phi ϕ 에만 영향을 받는 항이므로 각각의 각괄호 부분은 상수이다. 첫 항을 ℓ ( ℓ + 1 ) \ell(\ell + 1) ℓ ( ℓ + 1 ) 이라 두자. 그러면 둘째 항은 − ℓ ( ℓ + 1 ) -\ell(\ell + 1) − ℓ ( ℓ + 1 ) 이다.
1 R d d r ( r 2 d R d r ) − 2 M r 2 ℏ 2 ( V ( r ) − E ) = ℓ ( ℓ + 1 ) 1 Θ sin θ d d θ ( sin θ d Θ d θ ) + 1 Φ sin 2 θ d 2 Φ d 2 ϕ = − ℓ ( ℓ + 1 )
\begin{align*}
\frac{1}{R}\frac{d}{d r} \left( r^2\frac{d R}{d r} \right) -\frac{2Mr^{2}}{\hbar ^{2}}(V(r)-E) &= \ell(\ell+1) \tag{2} \\
\frac{1}{\Theta \sin\theta}\frac{d}{d\theta}\left( \sin\theta \frac{d \Theta}{d \theta} \right) + \frac{1}{\Phi\sin^2\theta}\frac{d^2 \Phi}{d^2 \phi} &= -\ell(\ell+1) \tag{3}
\end{align*}
R 1 d r d ( r 2 d r d R ) − ℏ 2 2 M r 2 ( V ( r ) − E ) Θ sin θ 1 d θ d ( sin θ d θ d Θ ) + Φ sin 2 θ 1 d 2 ϕ d 2 Φ = ℓ ( ℓ + 1 ) = − ℓ ( ℓ + 1 ) ( 2 ) ( 3 )
각도에 대한 방정식 ( 3 ) (3) ( 3 ) 의 해는 특별히 구면 조화 함수 라는 이름이 붙어있으며 다음과 같다.
Y ℓ m ( θ , ϕ ) = e i m ϕ P ℓ m ( cos θ )
Y_{\ell}^{m}(\theta, \phi) = e^{\i m\phi}P_{\ell}^{m}(\cos \theta)
Y ℓ m ( θ , ϕ ) = e i m ϕ P ℓ m ( cos θ )
( 3 ) (3) ( 3 ) 에서 m m m 이 직접적으로 보이지는 않지만 푸는 과정에서 θ \theta θ 와 ϕ \phi ϕ 를 변수분리할 때 분리상수로 등장한다. P ℓ m ( cos θ ) P_{\ell}^{m}(\cos\theta) P ℓ m ( cos θ ) 는 버금 르장드르 다항식 이다. 규격화 를 하면 아래와 같다.
Y ℓ m ( θ , ϕ ) = 2 ℓ + 1 4 π ( ℓ − m ) ! ( ℓ + m ) ! P ℓ m ( cos θ ) e i m ϕ
Y_{\ell}^{m} (\theta,\phi)=\sqrt{\frac{2\ell+1}{4\pi}\frac{(\ell-m)!}{(\ell+m)!}}P_{\ell}^{m}(\cos\theta)e^{\i m\phi}
Y ℓ m ( θ , ϕ ) = 4 π 2 ℓ + 1 ( ℓ + m )! ( ℓ − m )! P ℓ m ( cos θ ) e i m ϕ
이제 지름성분의 방정식 ( 2 ) (2) ( 2 ) 가 남았다. 양변에 R R R 을 곱하고 우변에 에너지 E E E 에 대한 항만 남도록 정리하면
− ℏ 2 2 M r 2 d d r ( r 2 d R d r ) + ( V − ℏ 2 2 M l ( l + 1 ) r 2 ) R = E R (4)
-\frac{ \hbar^{2} }{ 2Mr^{2} }\frac{d}{d r} \left( r^2\frac{d R}{d r} \right) +\left(V- \frac{\hbar ^{2}}{2M}\frac{l(l+1)}{r^{2}} \right)R =ER \tag{4}
− 2 M r 2 ℏ 2 d r d ( r 2 d r d R ) + ( V − 2 M ℏ 2 r 2 l ( l + 1 ) ) R = ER ( 4 )
이때 r R ( r ) = u ( r ) rR(r)=u(r) r R ( r ) = u ( r ) 로 치환하면 방정식이 간단해진다.
R = u r d R d r = 1 r d u d r − 1 r 2 u d d r ( r 2 d R d r ) = d d r ( r d u d r − u ) = r d 2 u d 2
\begin{align*}
R&=\frac{u}{r} \\
\frac{ dR }{ dr }&=\frac{1}{r}\frac{ d u }{ d r}-\frac{1}{r^{2}}u \\
\frac{ d }{ d r }\left(r^{2} \frac{ d R}{ d r } \right)&=\frac{ d }{ dr }\left( r \frac{ d u }{ dr }-u \right)=r\frac{ d ^{2}u}{ d^{2} }
\end{align*}
R d r d R d r d ( r 2 d r d R ) = r u = r 1 d r d u − r 2 1 u = d r d ( r d r d u − u ) = r d 2 d 2 u
그러므로 ( 4 ) (4) ( 4 ) 는 아래와 같다.
− ℏ 2 2 M r 2 r d 2 u d r 2 + ( V − ℏ 2 2 M ℓ ( ℓ + 1 ) r 2 ) u r = E u r ⟹ − ℏ 2 2 M d 2 u d r 2 + ( V − ℏ 2 2 M ℓ ( ℓ + 1 ) r 2 ) u = E u
\begin{align*}
&&-\frac{ \hbar^{2} }{ 2Mr^{2} }r\frac{ d ^{2}u}{ dr^{2} } +\left(V- \frac{\hbar ^{2}}{2M}\frac{\ell(\ell+1)}{r^{2}} \right)\frac{u}{r} &= E\frac{u}{r} \\
\implies &&-\frac{ \hbar^{2} }{ 2M }\frac{ d ^{2}u}{ dr^{2} } +\left(V- \frac{\hbar ^{2}}{2M}\frac{\ell(\ell+1)}{r^{2}} \right)u &= Eu
\end{align*}
⟹ − 2 M r 2 ℏ 2 r d r 2 d 2 u + ( V − 2 M ℏ 2 r 2 ℓ ( ℓ + 1 ) ) r u − 2 M ℏ 2 d r 2 d 2 u + ( V − 2 M ℏ 2 r 2 ℓ ( ℓ + 1 ) ) u = E r u = E u
이 꼴은 아래의 1차원 슈뢰딩거 방정식 과 매우 유사하다.
− ℏ 2 2 m d 2 ψ d x 2 + V ψ = E ψ
-\frac{\hbar^{2}}{2m}\frac{ d ^{2} \psi}{ d x^{2} }+V\psi = E\psi
− 2 m ℏ 2 d x 2 d 2 ψ + V ψ = E ψ
차이점은 퍼텐셜이 V = V − ℏ 2 2 M ℓ ( ℓ + 1 ) r 2 V = V- \dfrac{\hbar ^{2}}{2M}\dfrac{\ell(\ell+1)}{r^{2}} V = V − 2 M ℏ 2 r 2 ℓ ( ℓ + 1 ) 로 바뀌었다는 것뿐이다. 1 r 2 \dfrac{1}{r^{2}} r 2 1 에 비례하는 두번째 항을 원심력 항이라 부른다. u ( r ) u(r) u ( r ) 도 Y l m ( cos θ ) Y_{l}^{m}(\cos\theta) Y l m ( cos θ ) 와 마찬가지로 규격화 조건 을 만족해야한다.
∫ 0 ∞ ∣ R ( r ) ∣ 2 r 2 d r = ∫ 0 ∞ ∣ u ( r ) ∣ 2 d r
\int_{0}^{\infty}|R(r)|^{2}r^{2}dr=\int _{0}^{\infty} |u(r)|^{2}dr
∫ 0 ∞ ∣ R ( r ) ∣ 2 r 2 d r = ∫ 0 ∞ ∣ u ( r ) ∣ 2 d r
V ( r ) V(r) V ( r ) 에 대한 일반적인 풀이는 여기까지이고 이제 문제에서 퍼텐셜 함수 V ( r ) V(r) V ( r ) 가 정확히 주어지면 그에 따라서 풀어낼 수 있다.