logo

르장드르 미분 방정식의 삼각함수 꼴 📂상미분방정식

르장드르 미분 방정식의 삼각함수 꼴

정의

삼각함수 꼴의 버금 르장드르 미분 방정식은 아래와 같다.

d2ydθ2+cotθdydθ+(l(l+1)m2sin2θ)y=0or1sinθ(sinθdydθ)+(l(l+1)m2sin2θ)y=0 \begin{align} \frac{ d^{2} y}{ d \theta^{2} }+\cot \theta \frac{ d y}{ d \theta}+ \left( l(l+1) -\frac{m^{2}}{\sin ^{2 }\theta} \right)y=0 \\ \mathrm{or} \quad\frac{1}{\sin \theta}\left(\sin \theta \frac{dy}{d\theta} \right)+ \left(l(l+1) -\frac{ m^{2}}{\sin ^{2} \theta} \right)y=0 \end{align}

설명

전자기학, 양자역학 등에서 구면 좌표계 라플라스 방정식을 풀 때 유용하다. 참고로 해는 다음과 같다.

y=Plm(cosθ)=(1cos2θ)m2dmdxmPl(cosθ) \begin{align*} y &= P_{l}^{m}(\cos \theta) \\ &= (1-\cos ^{2}\theta)^{\frac{|m|}{2}} \frac{ d^{|m|} }{ dx^{|m|} } P_{l}(\cos\theta) \end{align*}

Plm(x)P_{l}^{m}(x)연관 르장드르 다항식, Pl(x)P_{l}(x)르장드르 다항식이라 한다.

Pl(x)=12ll!dldxl(x21)l P_{l}(x)=\dfrac{1}{2^l l!} \dfrac{d^l}{dx^l}(x^2-1)^l

유도

연관 르장드르 미분 방정식은 아래와 같다.

(1x2)d2ydx22xdydx+(m21x2+l(l+1))y=0(3) (1-x^{2})\frac{ d^{2}y }{ dx^{2} }-2x \frac{dy}{dx}+\left( \frac{-m^{2}}{1-x^{2}}+l(l+1)\right)y=0 \tag{3}

x=cosθx=\cos \theta로 치환하면 dx=sinθdθdx=-\sin \theta d\theta이므로 다음을 얻는다.

dydx=dydθdθdx=1sinθdydθ \frac{dy}{dx}=\frac{dy}{d\theta}\frac{ d \theta }{ dx }=-\frac{1}{\sin \theta}\frac{ dy }{ d\theta }

그리고 아래와 같이 계산된다.

d2yd2x=ddx(1sinθdydθ)=ddθ(1sinθdydθ)dθdx=(cosθsin2θdydθ1sinθd2ydθ2)(1sinθ)=1sin2θ(d2ydθ2cotθdydθ) \begin{align*} \frac{ d ^{2} y}{ d^{2}x } &= \frac{ d }{ dx }\left( -\frac{1}{\sin \theta} \frac{ d y}{ d\theta }\right) \\ &= \frac{ d }{ d\theta }\left( -\frac{1}{\sin \theta} \frac{ d y}{ d\theta }\right)\frac{ d \theta }{ dx } \\ &= \left( \frac{\cos \theta}{\sin^{2} \theta} \frac{ d y}{ d\theta } -\frac{1}{\sin \theta}\frac{ d^{2}y }{ d\theta^{2} }\right)\left( -\frac{1}{\sin \theta} \right) \\ &= \frac{1}{\sin ^{2} \theta} \left( \frac{ d ^{2}y }{ d \theta^{2} }-\cot\theta \frac{ d y}{ d\theta }\right) \end{align*}

따라서 이를 (3)(3)에 대입하면 다음과 같다.

(1cos2θ)(1sin2θ(d2ydθ2cotθdydθ))+2cosθsinθdydθ+(m21cos2θ+l(l+1))y=0 (1-\cos ^{2 \theta})\left( \frac{1}{\sin ^{2}\theta}\left(\frac{ d ^{2}y }{ d\theta ^{2} }-\cot \theta \frac{ d y}{ d\theta }\right) \right)+2\frac{\cos \theta}{\sin \theta}\frac{ d y}{ d \theta }+\left( \frac{-m^{2}}{1-\cos ^{2}\theta} +l(l+1)\right)y=0

정리하면 (1)(1)을 얻는다.

d2ydθ2cotθdydθ+2cotθdydθ+(m2sin2θ+l(l+1))y=0    d2ydθ2+cotθdydθ+(m2sin2θ+l(l+1))y=0 \begin{align*} &&\frac{ d ^{2}y}{ d \theta^{2} }-\cot \theta \frac{ d y}{ d\theta } + 2\cot \theta \frac{ d y}{ d\theta } +\left( \frac{-m^{2}}{\sin^{2} \theta} +l(l+1)\right)y=0 \\ \implies& &\frac{ d ^{2}y}{ d \theta^{2} }+\cot \theta \frac{ d y}{ d\theta } +\left( \frac{-m^{2}}{\sin ^{2}\theta} +l(l+1)\right)y=0 \end{align*}

2계항과 1계항을 묶으면 (2)(2)를 얻는다

1sinθ(sinθdydθ)+(m2sin2θ+l(l+1))y=0 \frac{1}{\sin \theta} \left( \sin \theta \frac{ d y}{ d\theta } \right)+\left( \frac{-m^{2}}{\sin ^{2}\theta} +l(l+1)\right)y=0