확률과정론에서의 정지 시간
정의
확률 공간 $( \Omega , \mathcal{F} , P)$ 이 주어져 있다고 하자. 필트레이션 $\left\{ \mathcal{F}_{n} \right\}$ 에 대해 $0$ 보다 크거나 같은 정수 값을 갖는 확률 변수 $\tau$ 가 모든 $n \in \mathbb{N}_{0}$ 에 대해 $(\tau = n) \in \mathcal{F}_{n}$ 을 만족하면 $\tau$ 를 정지 시간stopping Time이라고 한다.
- 보렐 셋 $B \in \mathcal{B}(\mathbb{R})$ 에 대해 $(\tau \in B) = \tau^{-1} (B)$ 로써, $(\tau = n)$ 은 $\tau^{-1} ( \left\{ n \right\} )$ 과 같다.
예시
정지 시간의 직관적인 개념은 관심 있는 사건이 일어나는―관찰되는 순간을 말한다. 가령 $\tau = 8$ 이라는 것은 정보 $\mathcal{F}_{8}$ 를 알고 있으면서 관심 있는 사건이 $n=8$ 에 일어난 것을 말한다. 언뜻 정지 시간의 조건은 너무 쉬워보이기도 한다. 하지만 모든 $n \in \mathbb{N}_{0}$ 에 대해 만족해야한다는 것이 난점이 된다.
$Y_{1}, Y_{2} , \cdots \overset{iid}{\sim} B(1,p)$ 라고 하자. 다시 말해, 각각의 $Y_{n}$ 이 확률 $p$ 의 베르누이 분포를 따른다고 하고, $Y_{5}$ 까지의 결과가 다음과 같다고 하자. $$ \begin{matrix} Y_{1} & Y_{2} & Y_{3} & Y_{4} & Y_{5} \\ 0 & 0 & 1 & 0 & 1 \end{matrix} $$
(1) 정지 시간이 아닌 경우: $\tau$ 를 $\tau:= \max \left\{ k: Y_{k} = 0 \right\}$ 라 두면 위의 경우에는 다음과 같이 $\tau$ 가 계산 된다. $$ \begin{matrix} Y_{1} & Y_{2} & Y_{3} & Y_{4} & Y_{5} \\ 0 & 0 & 1 & 0 & 1 \\ \tau = 1 & \tau = 2 & \tau = 2 & \tau = 4 & \tau = 5 \end{matrix} $$ 여기서 $\tau$ 는 $\left\{ Y_{k} \right\}_{1 \le k < n}$ 이 어떻게 되든 다음을 만족해야 정지 시간이 될 수 있다. $$ (\tau = n ) = \left( Y_{n} = 0 , Y_{n+1} = 1 , \cdots \right) $$ 이는 정확하게 $Y_{n} = 0$ 이고 그 이후로는 반드시 $1$ 이어야한다는 건데, 어떤 $n \in \mathbb{N}$ 이든 간에 아직 시행도 하지 않고 결과를 알 수는 없다. 따라서 $\tau$ 는 정지 시간이 될 수 없다.
(2) 정지 시간이 되는 경우: $\tau$ 를 $\tau:= \min \left\{ k: Y_{k} = 1 \right\}$ 라 두면 위의 경우에는 다음과 같이 $\tau$ 가 계산 된다. $$ \begin{matrix} Y_{1} & Y_{2} & Y_{3} & Y_{4} & Y_{5} \\ 0 & 0 & 1 & 0 & 1 \\ \tau = 0 & \tau = 0 & \tau = 3 & \tau = 3 & \tau = 3 \end{matrix} $$ $\tau$ 는 이미 $n=3$ 에 관심 있는 사건이 일어나서 미래에 무엇이 나오든 상관 없어졌고 정지 시간이 된다.
설명
위의 예시에서 $\max$ 는 정지 시간으로 좋지 못했지만 $\min$ 은 정지 시간이 된 것에 주목하라. 이러한 센스에서, 정지 시간은 ‘최초로 무언가가 일어나는 타이밍’이라고 직관적으로 간주할 수 있어야한다. 한편 수학적인 엄밀한 정의에서 $\tau$ 는 여전히 확률 변수라는 것 역시 잊어서는 안 된다. 확률 과정 $\left\{ X_{n} \right\}_{n \in \mathbb{N}_{0}}$ 이 주어져 있을 때, $\omega \in \Omega$ 에 대해 $X_{\tau}$ 는 다음을 의미한다. $$ X_{\tau} = X_{\tau} ( \omega )= X_{\tau (\omega)} ( \omega ) $$ 가령 $\tau (\omega_{1}) = 5$ 라면 $X_{\tau} (\omega_{1}) = X_{5} ( \omega_{1})$ 이 되는 식이다. $\tau$ 는 어디까지나 ‘사건이 일어날지 모르는 언젠가’를 나타내는 확률 변수이므로 ‘정지 시간’이라고 불리기 이전에 이전에 모든 $\omega \in \Omega$ 를 각각 어떤 $n \in \mathbb{N}_{0}$ 으로 매핑하는 ‘함수’다. 직관적인 이해에 매달려서 이 점을 잊으면 정지 시간이 동원되는 모든 수식 전개가 괴로워진다. 명심하도록 하자.