logo

라플라스 변환의 컨볼루션(합성곱) 📂상미분방정식

라플라스 변환의 컨볼루션(합성곱)

정의1

L\mathcal{L}라플라스 변환이라고 하자. 다음의 식을 만족하는 함수 fgf*g를 라플라스 변환에 대한 ffgg컨볼루션convolution of ff and gg with Laplace transform이라 한다.

L(fg)=L(f)L(g) \mathcal{L}(f*g) = \mathcal{L}(f) \cdot \mathcal{L}(g)

정리

ffgg의 라플라스 변환에 대한 컨볼루션 h=fgh=f*g는 다음과 같다.

h(t)=fg(t)=0tf(tτ)g(τ)dτ=0tf(τ)g(tτ)dτ h(t) = f*g(t) = \int_{0}^t f(t-\tau)g(\tau)d\tau = \int_{0}^t f(\tau) g(t-\tau)d\tau

증명

L{h(t)}=0est(0tf(tτ)g(τ)dτ)dt=00testf(tτ)g(τ)dτdt \begin{align*} \mathcal{L} \left\{ h(t) \right\} &= \int_{0}^{\infty} e^{-st} \left( \int_{0}^t f(t-\tau)g(\tau)d\tau \right)dt \\ &= \int_{0}^{\infty}\int_{0}^t e^{-st} f(t-\tau)g(\tau)d\tau dt \end{align*}

적분 순서를 바꿔주면(부록 참고)

00tdτdt    0τdtdτ \int_{0}^{\infty}\int_{0}^t d\tau dt\quad \implies \quad \int_{0}^{\infty}\int_\tau^{\infty} dt d\tau

이므로 위 식은 아래와 같다.

0τestf(tτ)g(τ)dtdτ \int_{0}^{\infty}\int_\tau^{\infty} e^{-st} f(t-\tau)g(\tau)dt d\tau

u=tτu=t-\tau라고 치환해주면

00esuesτf(u)g(τ)dudτ \int_{0}^{\infty}\int_{0}^{\infty} e^{-su}e^{-s\tau} f(u)g(\tau)du d\tau

uuτ\tau에 대한 적분을 각각 분리해주면

$$ \int_{0}^{\infty}e^{-s\tau}g(\tau)d\tau\int_{0}^{\infty} e^{-su} f(u)du=G(s)F(s)
$$

따라서

L(fg)(s)=Lh(s)=H(s)=G(s)F(s)=LgLf \mathcal{L}(f*g)(s) = \mathcal{L}h(s) = H(s) = G(s) F(s) = \mathcal{L}g \cdot \mathcal{L}f

예제

1

H(s)=as2(s2+a2)H(s)=\dfrac{a}{s^2(s^2+a^2)}의 라플라스 역변환을 구하여라.

L{t}=1s2\mathcal{L} \left\{ t \right\}=\dfrac{1}{s^2}이고, L{sin(at)}=as2+a2\mathcal{L} \left\{ \sin (at)\right\}=\dfrac{a}{s^2+a^2}이므로 h(t)h(t)ttsin(at)\sin (at)의 합성곱이다.

h(t)=0t(tτ)sin(aτ)dτ=atsin(at)a2 h(t) = \int_{0}^t (t-\tau)\sin (a\tau) d\tau = \dfrac{at-\sin(at)}{a^2}

참고 : 라플라스 변환표

2

다음과 같이 주어진 초기값 문제를 풀어라.

{y+4y=g(t)y(0)=3,y(0)=1 \begin{cases} y^{\prime \prime}+4y=g(t) \\ y(0)=3, \quad y^{\prime}(0)=-1 \end{cases}

주어진 2계 선형 비동차 미분방정식이 아래와 같다고 하자.

ay+by+cy=g(t) ay^{\prime \prime} + by^{\prime} + cy = g(t)

그리고 L{y}=Y(s)\mathcal{L} \left\{ y \right\} =Y(s), L{g(t)}=G(s)\mathcal{L} \left\{ g(t) \right\}=G(s)라고 하자. 그러면

Y(s)=(as+b)y(0)+ay(0)as2+bs+c+G(s)as2+bs+c Y(s) = \dfrac{ (as + b)y(0) + ay^{\prime}(0) } {as^2+bs+c} + \dfrac{G(s) }{as^2+bs+c}

라플라스 변환을 이용한 2계 미분 방정식의 풀이에 대한 공식을 적용하면

Y(s)=3s1s2+4+G(s)s2+4 Y(s)=\dfrac{3s-1}{s^2+4}+\dfrac{G(s)}{s^2+4}

정리하면

Y(s)=3ss2+4122s2+4+122s2+4G(s) Y(s)=3\dfrac{s}{s^2+4}-\dfrac{1}{2}\dfrac{2}{s^2+4}+\dfrac{1}{2}\dfrac{2}{s^2+4}G(s)

그러면 L{cos(2t)}=ss2+4\mathcal{L} \left\{ \cos (2t) \right\}=\dfrac{s}{s^2+4}이고, L{sin(2t)}=2s2+4\mathcal{L} \left\{ \sin (2t) \right\}=\dfrac{2}{s^2+4}이므로 y(t)y(t)

y(t)=3cos(2t)12sin(2t)+120tsin(2(tτ))g(τ)dτ y(t)=3\cos (2t) -\dfrac{1}{2}\sin (2t) +\dfrac{1}{2} \int_{0}^t \sin (2(t-\tau))g(\tau)d\tau

부록

1.png

2.png


  1. William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p275-276 ↩︎