오일러 상수 e는 무리수다 
📂해석개론 오일러 상수 e는 무리수다 정리 e ∉ Q 
e \notin \mathbb{Q}
 e ∈ / Q 
Q \mathbb{Q} Q 
증명 매클로린 전개를 이용 전략 : 매클로린 전개 를 통해 e − 1 e^{-1} e − 1 모순 을 이끌어낸다. 매클로린 전개를 사용해야하기 때문에 고등학교 교과과정 내에서는 증명할 수 없다.
N \mathbb{N} N Z \mathbb{Z} Z 
Part 1. x 1 = x 2 x_{1} = x_{2} x 1  = x 2   
e ∈ Q e \in \mathbb{Q} e ∈ Q e e e a , b ∈ N a,b \in \mathbb{N} a , b ∈ N e = a b e = {{ a } \over {b}} e = b a  지수함수의 매클로린 전개 에 의해
e − 1 = b a = ∑ k = 0 ∞ ( − 1 ) k k ! 
e^{-1} = {{ b } \over { a }} = \sum_{k=0}^{\infty} {{ (-1)^{k} } \over { k! }}
 e − 1 = a b  = k = 0 ∑ ∞  k ! ( − 1 ) k  
각변에 ( − 1 ) a + 1 a ! (-1)^{a+1} a! ( − 1 ) a + 1 a ! 
∑ k = 0 ∞ ( − 1 ) k + a + 1 a ! k ! = b ( − 1 ) a + 1 ( a − 1 ) ! 
\sum_{k=0}^{\infty} {{ (-1)^{k + a + 1} a! } \over { k! }} = b (-1)^{a+1} ( a - 1 )!
 k = 0 ∑ ∞  k ! ( − 1 ) k + a + 1 a !  = b ( − 1 ) a + 1 ( a − 1 )! 
좌변의 시그마가 k = a + 1 k=a+1 k = a + 1 ∑ k = 1 a ( − 1 ) k + a + 1 a ! k ! \sum_{k=1}^{a} {{ (-1)^{k + a + 1} a! } \over { k! }} ∑ k = 1 a  k ! ( − 1 ) k + a + 1 a !  ∑ k = a + 1 ∞ ( − 1 ) k + a + 1 a ! k ! = b ( − 1 ) a + 1 ( a − 1 ) ! − ∑ k = 1 a ( − 1 ) k + a + 1 a ! k ! 
\sum_{k=a+1}^{\infty} {{ (-1)^{k + a + 1} a! } \over { k! }} = b (-1)^{a+1} ( a - 1 )! - \sum_{k=1}^{a} {{ (-1)^{k + a + 1} a! } \over { k! }}
 k = a + 1 ∑ ∞  k ! ( − 1 ) k + a + 1 a !  = b ( − 1 ) a + 1 ( a − 1 )! − k = 1 ∑ a  k ! ( − 1 ) k + a + 1 a !  x 1 x_{1} x 1  x 2 x_{2} x 2  x 1 = x 2 x_{1} = x_{2} x 1  = x 2  x 1 : = ∑ k = a + 1 ∞ ( − 1 ) k + a + 1 a ! k ! 
x_{1} := \sum_{k=a+1}^{\infty} {{ (-1)^{k + a + 1} a! } \over { k! }}
 x 1  := k = a + 1 ∑ ∞  k ! ( − 1 ) k + a + 1 a !  
x 2 : = b ( − 1 ) a + 1 ( a − 1 ) ! − ∑ k = 1 a ( − 1 ) k + a + 1 a ! k ! 
x_{2} := b (-1)^{a+1} ( a - 1 )! - \sum_{k=1}^{a} {{ (-1)^{k + a + 1} a! } \over { k! }}
 x 2  := b ( − 1 ) a + 1 ( a − 1 )! − k = 1 ∑ a  k ! ( − 1 ) k + a + 1 a !  
Part 2. x 1 ∈ ( 0 , 1 ) x_{1} \in (0,1) x 1  ∈ ( 0 , 1 )  
x 1 x_{1} x 1  
x 1 = 1 a + 1 − 1 ( a + 1 ) ( a + 2 ) + 1 ( a + 1 ) ( a + 2 ) ( a + 3 ) − ⋯ 
x_{1} = {{ 1 } \over { a+1 }} - {{ 1 } \over { (a+1)(a+2) }} + {{ 1 } \over { (a+1)(a+2)(a+3) }} - \cdots
 x 1  = a + 1 1  − ( a + 1 ) ( a + 2 ) 1  + ( a + 1 ) ( a + 2 ) ( a + 3 ) 1  − ⋯ k k k ∣ ( − 1 ) k + a + 1 a ! k ! ∣ \left| (-1)^{k+a+1} {{ a! } \over { k! }} \right|  ( − 1 ) k + a + 1 k ! a !   x 1 x_{1} x 1  1 a + 1 {{ 1 } \over { a+1 }} a + 1 1  1 a + 1 − 1 ( a + 1 ) ( a + 2 ) {{ 1 } \over { a+1 }} - {{ 1 } \over { (a+1)(a+2) }} a + 1 1  − ( a + 1 ) ( a + 2 ) 1  x 1 x_{1} x 1  0 0 0 1 1 1 
Part 3. x 2 ∈ Z x_{2} \in \mathbb{Z} x 2  ∈ Z  
k ≤ a k \le a k ≤ a a ! k ! {{ a! } \over { k! }} k ! a !  x 2 ∈ N x_{2} \in \mathbb{N} x 2  ∈ N 
x 1 ∈ ( 0 , 1 ) 
x_{1} \in (0,1)
 x 1  ∈ ( 0 , 1 ) 
x 2 ∈ Z 
x_{2} \in \mathbb{Z}
 x 2  ∈ Z 
그런데 ( 0 , 1 ) ∩ Z = ∅ (0,1) \cap \mathbb{Z} = \emptyset ( 0 , 1 ) ∩ Z = ∅ x 1 ≠ x 2 x_{1} \ne x_{2} x 1   = x 2  x 1 = x 2 x_{1} = x_{2} x 1  = x 2  
■
e e e 오일러 상수의 정의 
e : = ∑ n = 0 ∞ 1 n ! 
e: = \sum \limits_{n=0}^{\infty} \dfrac{1}{n!}
 e := n = 0 ∑ ∞  n ! 1  
s n s_{n} s n  e e e e e e 
e − s n = 1 ( n + 1 ) ! + 1 ( n + 2 ) ! + 1 ( n + 3 ) ! + ⋯ < 1 ( n + 1 ) ! + 1 ( n + 1 ) ! ( n + 1 ) + 1 ( n + 1 ) ! ( n + 1 ) 2 + ⋯ = 1 ( n + 1 ) ! ( 1 + 1 ( n + 1 ) + 1 ( n + 1 ) 2 + ⋯  ) = 1 ( n + 1 ) ! ( n + 1 n ) = 1 n ! n 
\begin{align*}
e - s_{n} =& \dfrac{1}{(n+1)!} + \dfrac{1}{(n+2)!} + \dfrac{1}{(n+3)!} + \cdots
\\ &< \dfrac{1}{(n+1)!} + \dfrac{1}{(n+1)!(n+1)} + \dfrac{1}{(n+1)!(n+1)^{2}} + \cdots
\\ =& \dfrac{1}{(n+1)!}\left( 1 + \dfrac{1}{(n+1)} + \dfrac{1}{(n+1)^{2}} + \cdots\right)
\\ =& \dfrac{1}{(n+1)!}\left( \dfrac{n+1}{n} \right)
\\ =& \dfrac{1}{n! n}
\end{align*}
 e − s n  = = = =  ( n + 1 )! 1  + ( n + 2 )! 1  + ( n + 3 )! 1  + ⋯ < ( n + 1 )! 1  + ( n + 1 )! ( n + 1 ) 1  + ( n + 1 )! ( n + 1 ) 2 1  + ⋯ ( n + 1 )! 1  ( 1 + ( n + 1 ) 1  + ( n + 1 ) 2 1  + ⋯ ) ( n + 1 )! 1  ( n n + 1  ) n ! n 1   
이제 e e e e = p q e=\dfrac{p}{q} e = q p  p , q p, q p , q 
0 < q ! ( e − s q ) < 1 q 
0 < q!(e - s_{q}) < \dfrac{1}{q}
 0 < q ! ( e − s q  ) < q 1  
가정에 의해 q ! e = ( q − 1 ) ! p q!e=(q-1)!p q ! e = ( q − 1 )! p 
q ! s q = q ! ( 1 + 1 + 1 2 ! + ⋯ + 1 q ! ) 
q! s_{q} = q! \left( 1 + 1 + \dfrac{1}{2!} + \cdots + \dfrac{1}{q!} \right)
 q ! s q  = q ! ( 1 + 1 + 2 ! 1  + ⋯ + q ! 1  ) 
이므로 q ! s q q!s_{q} q ! s q  q ! ( e − s q ) q!(e-s_{q}) q ! ( e − s q  ) q ≥ 1 q\ge 1 q ≥ 1 q ! ( e − s q ) q!(e-s_{q}) q ! ( e − s q  ) 0 0 0 1 1 1 귀류법 에 따라서 e e e 
■
같이보기