비선형 1계 편미분 방정식의 특성 방정식 
📂편미분방정식 비선형 1계 편미분 방정식의 특성 방정식 x와 p에 대해서, 편미분방정식의 변수임을 강조할 때는 일반 글씨체 x , p ∈ R n x,p \in \mathbb{R}^{n} x , p ∈ R n s s s x , p ∈ R n \mathbf{x}, \mathbf{p} \in \mathbb{R}^{n} x , p ∈ R n  특성 메소드 열린 집합  Ω ⊂ R n \Omega \subset \mathbb{R}^{n} Ω ⊂ R n u ∈ C 2 ( Ω ) u\in C^{2}(\Omega) u ∈ C 2 ( Ω ) 비선형 1계 편미분 방정식 의 해라고 하자.
F ( D u ,   u ,   x ) = 0 
F(Du,\ u,\ x)=0
 F ( D u ,   u ,   x ) = 0 
그리고 x , z , p \mathbf{x}, z, \mathbf{p} x , z , p 
x ( s ) = ( x 1 ( s ) , … , x n ( s ) ) ∈ C 1 ( I ; Ω ) ( s ∈ I ⊂ R ) z ( s ) = u ( x ( s ) ) p ( s ) = D u ( x ( s ) ) 
\begin{align*}
\mathbf{x}(s) &=(x^{1}(s), \dots, x^{n}(s)) \in C^1(I;\Omega)\quad (s\in I \subset \mathbb{R})
\\ z(s) &= u(\mathbf{x}(s))
\\ \mathbf{p}(s) &= Du(\mathbf{x}(s))
\end{align*}
 x ( s ) z ( s ) p ( s )  = ( x 1 ( s ) , … , x n ( s )) ∈ C 1 ( I ; Ω ) ( s ∈ I ⊂ R ) = u ( x ( s )) = D u ( x ( s ))  
여기서 x \mathbf{x} x 
x ˙ ( s ) = D p F ( p ( s ) , z ( s ) , x ( s ) ) 
\dot{\mathbf{x}}(s) = D_{p}F\big(\mathbf{p}(s), z(s), \mathbf{x}(s) \big)
 x ˙ ( s ) = D p  F ( p ( s ) , z ( s ) , x ( s ) ) 
그러면 p ( s ) \mathbf{p}(s) p ( s ) z ( s ) z(s) z ( s ) 
{ p ˙ ( s ) = − D x F ( p ( s ) ,   z ( s ) ,   x ( s ) ) − D z F ( p ( s ) ,   z ( s ) ,   x ( s ) ) p ( s ) z ˙ ( s ) = D p F ( p ( s ) ,   z ( s ) ,   x ( s ) ) ⋅ p ( s ) x ˙ ( s ) = D p F ( p ( s ) ,   z ( s ) ,   x ( s ) ) 
\begin{cases}
\dot{\mathbf{p}} (s) = -D_{x}F\big(\mathbf{p}(s),\ z(s),\ \mathbf{x}(s) \big)-D_{z}F\big(\mathbf{p}(s),\ z(s),\ \mathbf{x}(s) \big)\mathbf{p}(s)
\\ \dot{z}(s) = D_{p}F\big(\mathbf{p}(s),\ z(s),\ \mathbf{x}(s) \big) \cdot \mathbf{p}(s)
\\ \dot{\mathbf{x}}(s) = D_{p}F\big(\mathbf{p}(s),\ z(s),\ \mathbf{x}(s) \big) \end{cases}
 ⎩ ⎨ ⎧  p ˙  ( s ) = − D x  F ( p ( s ) ,   z ( s ) ,   x ( s ) ) − D z  F ( p ( s ) ,   z ( s ) ,   x ( s ) ) p ( s ) z ˙ ( s ) = D p  F ( p ( s ) ,   z ( s ) ,   x ( s ) ) ⋅ p ( s ) x ˙ ( s ) = D p  F ( p ( s ) ,   z ( s ) ,   x ( s ) )  
설명 특성 메소드 method of characterisrics  는 비선형 1계 편미분방정식을 푸는 방법 중 하나로, 하나의 편미분방정식을 연립 상미분방정식 system of ODE 으로 나타내어 푸는 것이다.
유도 다음과 같은 비선형 1계 편미분 방정식이 주어졌다고 하자.
F ( D u , u , x ) = 0 
\begin{equation}
F(Du, u, x) = 0
\label{eq1}
\end{equation}
 F ( D u , u , x ) = 0   
이때, Ω ⊂ R n \Omega \subset \mathbb{R}^{n} Ω ⊂ R n 열린 집합 이고, F ∈ C ∞ ( R n × R × Ω ) F\in C^{\infty}(\mathbb{R}^n \times \mathbb{R} \times \Omega) F ∈ C ∞ ( R n × R × Ω ) 
u = g  on  Γ 
\begin{equation}
u=g \quad \text{ on } \Gamma
\label{eq2}
\end{equation}
 u = g  on  Γ   
특성 메소드의 아이디어는 주어진 경계 조건을 활용하여 고정된 x ∈ Ω x\in\Omega x ∈ Ω x 0 ∈ Γ x^0 \in \Gamma x 0 ∈ Γ Ω \Omega Ω u ∈ C 2 u \in C^{2} u ∈ C 2 ( eq1 ) , ( eq2 ) \eqref{eq1}, \eqref{eq2} ( eq1 ) , ( eq2 ) u u u 
그림에서의 선이 다음과 같은 함수로 표현된다고 하자.
x ( s ) = ( x 1 ( s ) ,   ⋯  ,   x n ( s ) ) , s ∈ I ⊂ R 
\mathbf{x}(s)=\big( x^1(s),\ \cdots,\ x^n(s) \big), \quad s\in I\subset \mathbb{R}
 x ( s ) = ( x 1 ( s ) ,   ⋯ ,   x n ( s ) ) , s ∈ I ⊂ R 
x ( 0 ) = x 0 \mathbf{x}(0)=x^{0} x ( 0 ) = x 0 x \mathbf{x} x s s s Ω \Omega Ω s s s u u u z z z 
z ( s ) : = u ( x ( s ) ) 
\begin{equation}
z(s):= u(\mathbf{x}(s))
\label{eq3}
\end{equation}
 z ( s ) := u ( x ( s ))   
비슷하게, s s s D u Du D u p \mathbf{p} p 
p ( s ) : = D u ( x ( s ) ) 
\mathbf{p}(s) := Du(\mathbf{x}(s))
 p ( s ) := D u ( x ( s )) 
그러면 p ( s ) = ( p 1 ( s ) , … , p n ( s ) ) \mathbf{p}(s)=(p^{1}(s), \dots, p^{n}(s)) p ( s ) = ( p 1 ( s ) , … , p n ( s )) 
p i ( s ) = u x i ( x ( s ) ) 
\begin{equation}
p^i(s)=u_{x_{i}}( \mathbf{x}(s))
\label{eq4}
\end{equation}
 p i ( s ) = u x i   ( x ( s ))   
s s s d f d s = f ˙ \dfrac{d f}{ds} = \dot{f} d s df  = f ˙  d p i ( s ) = u x i x 1 d x 1 + ⋯ u x i x n d x n dp^i(s)=u_{x_{i}x_{1}}dx^1+\cdots u_{x_{i}x_{n}}dx^n d p i ( s ) = u x i  x 1   d x 1 + ⋯ u x i  x n   d x n p ˙ i ( s ) \dot{p}^i(s) p ˙  i ( s ) 
p ˙ i ( s ) = ∑ j = 1 n u x i x j ( x ( s ) ) x ˙ j ( s ) 
\begin{equation}
\dot{p}^i(s)=\sum \limits_{j=1}^n u_{x_{i}x_{j}}( \mathbf{x}(s))\dot{x}^j(s)
\label{eq5}
\end{equation}
 p ˙  i ( s ) = j = 1 ∑ n  u x i  x j   ( x ( s )) x ˙ j ( s )   
이때 d F = F p 1 d p 1 + ⋯ F p n d p n + F z d z + F x 1 d x + ⋯ + F x n d x n dF=F_{p_{1}}dp_{1}+\cdots F_{p_{n}}dp_{n}+F_{z}dz+F_{x_{1}}dx_{} + \cdots + F_{x_{n}}dx_{n} d F = F p 1   d p 1  + ⋯ F p n   d p n  + F z  d z + F x 1   d x  + ⋯ + F x n   d x n  ( eq1 ) \eqref{eq1} ( eq1 ) x i x_{i} x i  
∑ j = 1 n F p j ( p ( s ) , z ( s ) , x ( s ) ) p x i j ( s ) + F z ( p ( s ) , z ( s ) , x ( s ) ) z x i ( s ) + F x i ( p ( s ) , z ( s ) , x ( s ) ) = 0 
\sum \limits_{j=1}^n F_{p_{j}}\big( \mathbf{p}(s), z(s), \mathbf{x}(s) \big)p^j_{x_{i}}(s)+F_{z} \big( \mathbf{p}(s), z(s), \mathbf{x}(s) \big)z_{x_{i}}(s)+F_{x_{i}} \big( \mathbf{p}(s), z(s), \mathbf{x}(s) \big) = 0
 j = 1 ∑ n  F p j   ( p ( s ) , z ( s ) , x ( s ) ) p x i  j  ( s ) + F z  ( p ( s ) , z ( s ) , x ( s ) ) z x i   ( s ) + F x i   ( p ( s ) , z ( s ) , x ( s ) ) = 0 
이때 ( eq3 ) , ( eq4 ) \eqref{eq3}, \eqref{eq4} ( eq3 ) , ( eq4 ) z x i = u x i = p i z_{x_{i}}=u_{x_{i}}=p^{i} z x i   = u x i   = p i ( eq4 ) \eqref{eq4} ( eq4 ) p x i j = u x j x i p^{j}_{x_{i}}=u_{x_{j}x_{i}} p x i  j  = u x j  x i   
∑ j = 1 n F p j ( p ( s ) , z ( s ) , x ( s ) ) u x j x i ( x ( s ) ) + F z ( p ( s ) , z ( s ) , x ( s ) ) p i ( s ) + F x i ( p ( s ) , z ( s ) , x ( s ) ) = 0 
\begin{equation}
\sum \limits_{j=1}^{n} F_{p_{j}}\big( \mathbf{p}(s), z(s), \mathbf{x}(s) \big)u_{x_{j}x_{i}}(\mathbf{x}(s))+F_{z}\big( \mathbf{p}(s), z(s), \mathbf{x}(s) \big) p^{i}(s)+F_{x_{i}}\big( \mathbf{p}(s), z(s), \mathbf{x}(s) \big) = 0
\label{eq6}
\end{equation}
 j = 1 ∑ n  F p j   ( p ( s ) , z ( s ) , x ( s ) ) u x j  x i   ( x ( s )) + F z  ( p ( s ) , z ( s ) , x ( s ) ) p i ( s ) + F x i   ( p ( s ) , z ( s ) , x ( s ) ) = 0   
그런데 위 식을 보면 ( eq5 ) \eqref{eq5} ( eq5 ) u x i x j u_{x_{i}x_{j}} u x i  x j   x ˙ \dot{\mathbf{x}} x ˙ 
x ˙ j ( s ) = F p j ( p ( s ) , z ( s ) , x ( s ) ) , ∀   s ∈ I ⊂ R 
\begin{equation}
\dot{x}^{j}(s)=F_{p_{j}}(\mathbf{p}(s), z(s), \mathbf{x}(s)), \quad \forall\ s\in I \subset \mathbb{R}
\label{eq7}
\end{equation}
 x ˙ j ( s ) = F p j   ( p ( s ) , z ( s ) , x ( s )) , ∀   s ∈ I ⊂ R   
( eq6 ) \eqref{eq6} ( eq6 ) ( eq7 ) \eqref{eq7} ( eq7 ) ( eq5 ) \eqref{eq5} ( eq5 ) 
p ˙ i ( s ) = − F z ( p ( s ) , z ( s ) , x ( s ) ) p i ( s ) − F x i ( p ( s ) , z ( s ) , x ( s ) ) , ∀   s ∈ I ( i = 1 , … , n ) 
\begin{equation}
\dot{p}^{i} (s) = -F_{z} \big( \mathbf{p}(s), z(s), \mathbf{x}(s) \big)p^i(s)-F_{x_{i}} \big( \mathbf{p}(s), z(s), \mathbf{x}(s) \big), \quad \forall\ s\in I(i=1,\dots,n)
\label{eq8}
\end{equation}
 p ˙  i ( s ) = − F z  ( p ( s ) , z ( s ) , x ( s ) ) p i ( s ) − F x i   ( p ( s ) , z ( s ) , x ( s ) ) , ∀   s ∈ I ( i = 1 , … , n )   
또한 ( eq3 ) \eqref{eq3} ( eq3 ) s s s 
z ˙ ( s ) = ∑ j = 1 n u x j ( x ( s ) ) x ˙ j ( s ) 
\dot{z}(s)=\sum \limits_{j=1}^n u_{x_{j}}(\mathbf{x}(s))\dot{x}^j(s)
 z ˙ ( s ) = j = 1 ∑ n  u x j   ( x ( s )) x ˙ j ( s ) 
여기에 ( eq4 ) p i = u x i \eqref{eq4} p^{i}=u_{x_{i}} ( eq4 ) p i = u x i   ( eq7 ) x ˙ j = F p j \eqref{eq7} \dot{x}^{j} = F_{p_{j}} ( eq7 ) x ˙ j = F p j   
z ˙ ( s ) = ∑ j = 1 n p j ( s ) F p j ( p ( s ) ,   z ( s ) ,   x ( s ) ) , s ∈ I ⊂ R , 
\begin{equation}
\dot{z}(s)=\sum \limits_{j=1}^n p^j(s)F_{p_{j}}\big( \mathbf{p}(s),\ z(s),\ \mathbf{x}(s) \big), \quad s\in I \subset \mathbb{R},
\label{eq9}
\end{equation}
 z ˙ ( s ) = j = 1 ∑ n  p j ( s ) F p j   ( p ( s ) ,   z ( s ) ,   x ( s ) ) , s ∈ I ⊂ R ,   
이러한 과정으로 얻은 ( eq7 ) , ( eq8 ) , ( eq9 ) \eqref{eq7}, \eqref{eq8}, \eqref{eq9} ( eq7 ) , ( eq8 ) , ( eq9 ) 2 n + 1 2n+1 2 n + 1 특성 방정식 characteristic equations 이라 한다. 또한 각각의 미지수 p ( s ) , z ( s ) , x ( s ) \mathbf{p}(s), z(s), \mathbf{x}(s) p ( s ) , z ( s ) , x ( s ) ( eq1 ) \eqref{eq1} ( eq1 ) 특성 characteristics, 지표 이라 한다.
{ p ˙ ( s ) = − D x F ( p ( s ) ,   z ( s ) ,   x ( s ) ) − D z F ( p ( s ) ,   z ( s ) ,   x ( s ) ) p ( s ) z ˙ ( s ) = D p F ( p ( s ) ,   z ( s ) ,   x ( s ) ) ⋅ p ( s ) x ˙ ( s ) = D p F ( p ( s ) ,   z ( s ) ,   x ( s ) ) 
\begin{cases}
\dot{\mathbf{p}} (s) = -D_{x}F\big(\mathbf{p}(s),\ z(s),\ \mathbf{x}(s) \big)-D_{z}F\big(\mathbf{p}(s),\ z(s),\ \mathbf{x}(s) \big)\mathbf{p}(s)
\\ \dot{z}(s) = D_{p}F\big(\mathbf{p}(s),\ z(s),\ \mathbf{x}(s) \big) \cdot \mathbf{p}(s)
\\ \dot{\mathbf{x}}(s) = D_{p}F\big(\mathbf{p}(s),\ z(s),\ \mathbf{x}(s) \big) \end{cases}
 ⎩ ⎨ ⎧  p ˙  ( s ) = − D x  F ( p ( s ) ,   z ( s ) ,   x ( s ) ) − D z  F ( p ( s ) ,   z ( s ) ,   x ( s ) ) p ( s ) z ˙ ( s ) = D p  F ( p ( s ) ,   z ( s ) ,   x ( s ) ) ⋅ p ( s ) x ˙ ( s ) = D p  F ( p ( s ) ,   z ( s ) ,   x ( s ) )  
■