logo

フーリエ係数の極限は0である 📂フーリエ解析

フーリエ係数の極限は0である

定理

フーリエ係数 an,bna_{n}, b_{n}複素フーリエ係数 c±nc_{\pm n}は限界nn \rightarrow \infty

limnan=0limnbn=0limnc±n=0 \begin{align*} \lim \limits_{n \rightarrow \infty} a_{n} &= 0 \\ \lim \limits_{n \rightarrow \infty} b_{n} &= 0 \\ \lim \limits_{n \rightarrow \infty} c_{\pm n} &= 0 \end{align*}

証明

ベッセルの不等式によって、フーリエ係数の合計が収束することが分かっている。

14a02+12n=1(an2+bn2)=cn212LLLf(t)2dt \dfrac{1}{4}|a_{0}|^2 +\dfrac{1}{2}\sum\limits_{n=1}^{\infty} \left(|a_{n}|^2 + |b_{n}|^2 \right) =\sum \limits_{-\infty}^{\infty} | c_{n} |^2 \le \dfrac{1}{2L}\int_{-L}^{L} | f(t)|^2 dt

だから、an2, bn2, c±n2|a_{n}|^2,\ |b_{n}|^2,\ |c_{\pm n}|^2は収束する級数のnn番目の項だ。級数が収束すると、数列の極限は0 だから。

limnan2=0 \lim \limits_{n \rightarrow \infty} |a_{n}|^2=0

limnbn2=0 \lim \limits_{n \rightarrow \infty} |b_{n}|^2=0

limnc±n2=0 \lim \limits_{n \rightarrow \infty} |c_{\pm n}|^2=0

だから、

limnan=0 \lim \limits_{n \rightarrow \infty} a_{n}=0

limnbn=0 \lim \limits_{n \rightarrow \infty} b_{n}=0

limnc±n=0 \lim \limits_{n \rightarrow \infty} c_{\pm n}=0